庆祝圆周率(π)节!
By 苏剑林 | 2010-03-14 | 71109位读者 | 引用π = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 ...
$\pi \approx {355}/{113}$
“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐”
$\pi$,一个小小的符号,代表着一个伟大的数字。从古到今,几乎所有国家都有人研究过它。在很长的时期内,$\pi$的有效数字代表了这个国家的数学发展程度,在使用计算机计算以前,$\pi$的计算可谓是马拉松式进行。很早人们就知道了2-4位的有效数字(古希腊、古中国、古印度),众所周知之后祖冲之的3.1415926领先了一千多年;紧接着是西方的35位、100位、500位.....甚至有人穷其一生就为算$\pi$!自从计算机参与到其中之后,有效数字光速般增加,而在2009年末,有科学家已经用超级计算机计算出圆周率暂时计到小数点后2万9千亿个小数位。现在$\pi$的位数已经不大重要了(毕竟30位有效数字就完全足够用来精确衡量宇宙大小!),$\pi$的计算成为了测试计算机性能以及测试算法效率的一个指标!
唯美星空·梦幻天国(KAGAYA加贺谷穰作品)
By 苏剑林 | 2010-02-14 | 50669位读者 | 引用谈大气消光和大气折光
By 苏剑林 | 2010-03-06 | 39734位读者 | 引用苏剑林(BoJone) 编写/翻译
实际感受:
大家也许会有这样的生活经验:早上的太阳没有中午的太阳猛烈?从东方升起到我们的头顶,月亮一直在变“亮”?……这些现象都与地球大气的“消光”现象密切相关!
众所周知,地球有一层厚厚的大气,既是我们呼吸的来源,也是我们生命的保护伞。他为我们提供了臭氧层,也为我们提供了蓝天和风霜雨露,还为我们送上了绚丽的彩虹。然而,在天文学角度,大气却是我们的“障碍”,浓厚的大气不利于我们对宇宙进行清晰的观测。因此,天文学家们一直希望把天文台建立海拔更高的地方,因为那里有着稀薄的大气……为了渴求更高的清晰度,人们甚至把望远镜放到了地球之外。
【翻译】巨型望远镜:要继续,就得有牺牲!
By 苏剑林 | 2015-06-10 | 27763位读者 | 引用文章来自:新科学家,这是一篇关于30米望远镜(Thirty Meter Telescope,TMT)的新闻,起因是望远镜的制造遭到当地人的不满,当然背后的原因是很深远的,难以说清楚。更多有关TMT的新闻,可以阅读:http://www.ctmt.org/
夏威夷的巨型望远镜:要继续,就得有牺牲!
四分之一必须离开!在停止了两个月之后,夏威夷的巨型30米望远镜(Thirty Meter Telescope,TMT)重新回归到建设进程——但要牺牲其他望远镜。
由于夏威夷当地居民的抗议声越来越大,早在四月望远镜的建设工作就被迫暂停。与该望远镜相比,目前世界上所有的望远镜都相形见绌——它让能够让天文学家们凝视可见的宇宙的边缘。它位于许多夏威夷人认为是“神圣之地”的死火山莫纳克亚山,因此被夏威夷人认为是一种侮辱——尤其是在山顶已经有十多个望远镜了。
【语料】2500万中文三元组!
By 苏剑林 | 2017-04-24 | 90220位读者 | 引用闲聊
这两年,知识图谱、问答系统、聊天机器人等领域是越来越火了。知识图谱是一个很泛化的概念,在我看来,涉及到知识库的构建、检索、利用等机器学习相关的内容,都算知识图谱。当然,这也不是个什么定义,只是个人的直观感觉。
做知识图谱的读者都知道,三元组是结构化知识的一种方法,是做知识型问答系统的重要组成部分。对于英文领域,已经有一些较大的开源的三元组语料库,而很显然,中文目前还没有这样的语料库共享(哪怕有人爬取到了,也珍藏起来了)。笔者前段时间写了个百度百科的爬虫,爬了一段时间,抓了几百万个百度百科的词条。其中不少词条含有一些结构化的信息,直接抽取出来,就是有效的“三元组”了,可以用来做知识图谱。本文分享的三元组语料正是由此而来,共有2500万个三元组。
与向量的渊源极深的四元数
By 苏剑林 | 2010-08-27 | 33329位读者 | 引用当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?
当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。
备忘:椭圆坐标与复三角函数
By 苏剑林 | 2011-04-10 | 49852位读者 | 引用复分析学习1:揭示微分与积分的联系
By 苏剑林 | 2012-08-02 | 35511位读者 | 引用笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数和傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。
我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$
最近评论