特殊的通项公式:二次非线性递推
By 苏剑林 | 2014-11-12 | 62938位读者 | 引用特殊的通项公式
对数学或编程感兴趣的读者,相信都已经很熟悉斐波那契数列了
0, 1, 1, 2, 3, 5, 8, 13, ...
它是由
$$a_{n+2}=a_{n+1}+a_n,\quad a_0=0,a_1=1$$
递推所得。读者或许已经见过它的通项公式
$$a_{n}=\frac{\sqrt{5}}{5} \cdot \left[\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n}\right]$$
这里假设我们没有如此高的智商可以求出这个复杂的表达式出来,但是我们通过研究数列发现,这个数列越来越大时,相邻两项趋于一个常数,这个常数也就是(假设我们只发现了后面的数值,并没有前面的根式)
$$\beta=\frac{1 + \sqrt{5}}{2}=1.61803398\dots$$
[转载] 做数学一定要是天才吗?
By 苏剑林 | 2014-11-17 | 28964位读者 | 引用(译自 陶哲轩 博客, 译者 liuxiaochuang)
(英文原文:Does one have to be a genius to do maths?)
这个问题的回答是一个大写的:不!为了达到对数学有一个良好的,有意义的贡献的目的,人们必须要刻苦努力;学好自己的领域,掌握一些其他领域的知识和工具;多问问题;多与其他数学工作者交流;要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因,什么天生的洞察能力;不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。
大众对数学家的形象有一个错误的认识:这些人似乎都使孤单离群的(甚至有一点疯癫)天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破的进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论,深刻的定理,但是那都是经过几年,几十年,甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。(例如, Wiles 解决费马最后定理的工作,或者Perelman 解决庞加莱猜想的工作。)
有趣的求极限题:随心所欲的放缩
By 苏剑林 | 2015-03-28 | 45285位读者 | 引用昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。
求解
首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$
海伦公式的一个别致的物理推导
By 苏剑林 | 2015-03-27 | 52098位读者 | 引用海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。
$$\sqrt{p(p-a)(p-b)(p-c)}$$
在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。
从Knotsevich在黑板上写的级数题目谈起
By 苏剑林 | 2015-02-27 | 29895位读者 | 引用exp(1/2 t^2+xt)级数展开的图解技术
By 苏剑林 | 2015-08-13 | 31544位读者 | 引用本文要研究的是关于$t$的函数
$$\exp\left(\frac{1}{2}t^2+xt\right)$$
在$t=0$处的泰勒展开式。显然,它并不困难,手算或者软件都可以做出来,答案是:
$$1+x t+\frac{1}{2} \left(x^2+1\right) t^2+\frac{1}{6}\left(x^3+3 x\right) t^3 +\frac{1}{24} \left(x^4+6 x^2+3\right) t^4 + \dots$$
不过,本文将会给出笔者构造的该级数的一个图解方法。通过这个图解方法比较比较直观而方便地手算出展开式的前面一些项。后面我们再来谈谈这种图解技术的起源以及进一步的应用。
级数的图解方法:说明
首先,很明显要写出这个级数,关键是写出展开式的每一项,也就是要求出
$$f_k (x) = \left.\frac{d^k}{dt^k}\exp\left(\frac{1}{2}t^2+xt\right)\right|_{t=0}$$
$f_k (x)$是一个关于$x$的$k$次整系数多项式,$k$是展开式的阶,也是求导的阶数。
这里,我们用一个“点”表示一个$x$,用“两点之间的一条直线”表示“相乘”,那么,$x^2$就可以表示成
2015诺贝尔医学奖:中国人在内
By 苏剑林 | 2015-10-05 | 24285位读者 | 引用运动相机测试:家乡的星空
By 苏剑林 | 2016-08-03 | 38704位读者 | 引用记得很早之前就想尝试一下拍星空,无奈一直都没有设备。以前只知道单反可以拍星空,因此,一直以来的想法就是有钱了就去买台单反。因为各种原因一拖再拖,最后慢慢觉得,对于我这种三分钟热度的人来说,单反的意义还真的不是很大。
这两年,在小米的鼓吹下,小蚁运动相机在国内算是慢慢掀起了一股运动相机潮。这种相机的特点是小巧、灵活,价格也不贵(相比单反)。灵活不仅仅是说它便于携带,而且还是功能上的灵活,比如一代小蚁还支持编程拍摄!(写程序控制快门、ISO、拍摄间隔,并实现定时拍摄等)这样当然很快就吸引了我,在小蚁2代众筹之时,我也咬咬牙,入了一台。
前两天回到家,刚好晴夜,马上就试了一下拍星空的效果。下面是在我家楼顶拍的,用ISO400曝光30秒的效果:
最近评论