高斯型积分的微扰展开(二)
By 苏剑林 | 2015-03-07 | 23729位读者 | 引用为什么第二篇姗姗来迟?
其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673
这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。
后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。
轻微的扰动——摄动法简介(3)
By 苏剑林 | 2013-03-07 | 39653位读者 | 引用微分方程领域大放光彩
虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。
跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。
当Matlab遇上牛顿法
By 苏剑林 | 2013-05-22 | 59726位读者 | 引用牛顿法是求方程近似根的一个相当有用而且快捷的方法,我们最近科学计算软件课程(Matlab)的一个作业就是编写求方程近似解的程序,其中涉及到牛顿法。我们要实现的目标是,用户输入一道方程,脚本就自动求出根来。这看起来是一个挺简单的循环迭代程序,但是由于Matlab本身的特殊性,却产生了不少困难。
Matlab是为了数值计算(尤其是矩阵运算)而生的,因此它并不擅长处理符号计算。这就给我们编程带来了困难。在网上随便一搜,就可以发现,网上的Matlab牛顿法程序都是要求用户同时输入方程及其导函数,这显然是不方便的,因为Matlab本身就具备了求导功能。下面我们来分析一下困难在哪里。
我们要实现的最基本功能是定义一个函数,然后可以根据该函数求具体的函数值,并且自动求该函数的导数,接着求导数值。这些看起来很基本的功能在Matlab中却很难调和,因为Matlab的“函数”定义很广,一个具有特定功能的M文件叫“函数”,一个运算式$f(x)$也可能是一个函数,显然后者是可以求导的,前者却不行,所以Matlab一刀砍——不能对函数求导!!
数学基本技艺之23、24(上)
By 苏剑林 | 2013-09-26 | 16500位读者 | 引用力学系统及其对偶性(三)
By 苏剑林 | 2013-11-15 | 17592位读者 | 引用在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。
变分中的变量代换
考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$
一维弹簧的运动(上)
By 苏剑林 | 2014-03-11 | 28902位读者 | 引用在讨论了倒立单摆的相关分析之后,胡雄大哥(笔者的一位好友)提出了一个问题:一根均匀杆,当然质量不可忽略,只有一个力(简单起见,可以先假设为恒力)作用在其中一个点上(简单起见,可以假设为端点),那么杆是怎么运动的?
其实笔者学了不少的经典力学,也分析了不少问题,但就是对于力矩、角动量等还是模模糊糊的,对于我来说,大多数经典力学问题就是“作用量+变分”,本题也不例外。为了让题目的实验意义更加明确,不妨将题目改成:
一根中性的均匀杆,它的一个端点带有一个点电荷,那么它(仅仅)在一个均匀电场中的运动是怎样的?
在这里,我们进一步简化,只考虑平面问题。杆属于刚体,为了描述杆的运动,我们需要描述杆上一点的运动,以及杆绕这一点的转动,也就是说,即使只考虑平面的情况,该系统也是有三个自由度的。设杆的带电荷那一端点的坐标为$(x,y)$,为了描述杆的转动,以这一端点为中心建立极坐标系,设杆的极角为$\theta$。设电势的函数为$U(x,y)$,因为只有一点带电(受力),因此势能是简单的。
最近评论