宇宙驿站感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

版权科学空间致力于知识分享,所以欢迎您转载本站文章,但转载本站内容必须遵循 署名-非商业用途-保持一致 的创作共用协议。

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言进行交流、建议或反馈科学空间的问题。
会员注册 会员登录 查看全站文章归档页

25 Apr

将“softmax+交叉熵”推广到多标签分类问题

一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。

类别不平衡

类别不平衡

单标签到多标签

一般来说,多分类问题指的就是单标签分类问题,即从$n$个候选类别中选$1$个目标类别。假设各个类的得分分别为$s_1,s_2,
\dots,s_n$,目标类为$t\in\{1,2,\dots,n\}$,那么所用的loss为
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}= - s_t + \log \sum\limits_{i=1}^n e^{s_i}\label{eq:log-softmax}\end{equation}
这个loss的优化方向是让目标类的得分$s_t$变为$s_1,s_2,\dots,s_t$中的最大值。关于softmax的相关内容,还可以参考《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等文章。

点击阅读全文...

20 Apr

EAE:自编码器 + BN + 最大熵 = 生成模型

生成模型一直是笔者比较关注的主题,不管是NLP和CV的生成模型都是如此。这篇文章里,我们介绍一个新颖的生成模型,来自论文《Batch norm with entropic regularization turns deterministic autoencoders into generative models》,论文中称之为EAEEntropic AutoEncoder)。它要做的事情给变分自编码器(VAE)基本一致,最终效果其实也差不多(略优),说它新颖并不是它生成效果有多好,而是思路上的新奇,颇有别致感。此外,借着这个机会,我们还将学习一种统计量的估计方法——$k$邻近方法,这是一种很有用的非参数估计方法。

自编码器vs生成模型

普通的自编码器是一个“编码-解码”的重构过程,如下图所示:

典型自编码器示意图

典型自编码器示意图

其loss一般为
\begin{equation}L_{AE} = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - \hat{x}\right\Vert^2\right] = \mathbb{E}_{x\sim \tilde{p}(x)}\left[\left\Vert x - D(E(x))\right\Vert^2\right]\end{equation}

点击阅读全文...

13 Apr

突破瓶颈,打造更强大的Transformer

《Attention is All You Need》一文发布后,基于Multi-Head Attention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模型的热度推上了又一个高峰。当然,技术的探索是无止境的,改进的工作也相继涌现:有改进预训练任务的,比如XLNET的PLM、ALBERT的SOP等;有改进归一化的,比如Post-Norm向Pre-Norm的改变,以及T5中去掉了Layer Norm里边的beta参数等;也有改进模型结构的,比如Transformer-XL等;有改进训练方式的,比如ALBERT的参数共享等;...

以上的这些改动,都是在Attention外部进行改动的,也就是说它们都默认了Attention的合理性,没有对Attention本身进行改动。而本文我们则介绍关于两个新结果:它们针对Multi-Head Attention中可能存在建模瓶颈,提出了不同的方案来改进Multi-Head Attention。两篇论文都来自Google,并且做了相当充分的实验,因此结果应该是相当有说服力的了。

再小也不能小key_size

第一个结果来自文章《Low-Rank Bottleneck in Multi-head Attention Models》,它明确地指出了Multi-Head Attention里边的表达能力瓶颈,并提出通过增大key_size的方法来缓解这个瓶颈。

点击阅读全文...

2 Apr

bert4keras在手,baseline我有

百度的“2020语言与智能技术竞赛”开赛了,今年有五个赛道,分别是机器阅读理解、推荐任务对话、语义解析、关系抽取、事件抽取。每个赛道中,主办方都给出了基于PaddlePaddle的baseline模型,这里笔者也基于bert4keras给出其中三个赛道的个人baseline,从中我们可以看到用bert4keras搭建baseline模型的方便快捷与简练。

思路简析

这里简单分析一下这三个赛道的任务特点以及对应的baseline设计。

点击阅读全文...

26 Mar

GELU的两个初等函数近似是怎么来的

GELU,全称为Gaussian Error Linear Unit,也算是RELU的变种,是一个非初等函数形式的激活函数。它由论文《Gaussian Error Linear Units (GELUs)》提出,后来被用到了GPT中,再后来被用在了BERT中,再再后来的不少预训练语言模型也跟着用到了它。随着BERT等预训练语言模型的兴起,GELU也跟着水涨船高,莫名其妙地就成了热门的激活函数了。

gelu函数图像

gelu函数图像

在GELU的原始论文中,作者不仅提出了GELU的精确形式,还给出了两个初等函数的近似形式,本文来讨论它们是怎么得到的。

点击阅读全文...

分类:数学研究    标签:近似, 分析 阅读全文 抢沙发
23 Mar

AdaFactor优化器浅析(附开源实现)

自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效地刷榜。不过,理想可以无限远,现实通常很局促,有时候模型太大了,大到哪怕你拥有了大显存的GPU甚至TPU,依然会感到很绝望。比如GPT2最大的版本有15亿参数,最大版本的T5模型参数量甚至去到了110亿,这等规模的模型,哪怕在TPU集群上也没法跑到多大的batch size。

这时候通常要往优化过程着手,比如使用混合精度训练(tensorflow下还可以使用一种叫做bfloat16的新型浮点格式),即省显存又加速训练;又或者使用更省显存的优化器,比如RMSProp就比Adam更省显存。本文则介绍AdaFactor,一个由Google提出来的新型优化器,首发论文为《Adafactor: Adaptive Learning Rates with Sublinear Memory Cost》AdaFactor具有自适应学习率的特性,但比RMSProp还要省显存,并且还针对性地解决了Adam的一些缺陷。

Adam

首先我们来回顾一下常用的Adam优化器的更新过程。设$t$为迭代步数,$\alpha_t$为当前学习率,$L(\theta)$是损失函数,$\theta$是待优化参数,$\epsilon$则是防止溢出的小正数,那么Adam的更新过程为

点击阅读全文...

16 Mar

现在可以用Keras玩中文GPT2了

前段时间留意到有大牛开源了一个中文的GPT2模型,是最大的15亿参数规模的,看作者给的demo,生成效果还是蛮惊艳的,就想着加载到自己的bert4keras来玩玩。不过早期的bert4keras整体架构写得比较“死”,集成多个不同的模型很不方便。前两周终于看不下去了,把bert4keras的整体结构重写了一遍,现在的bert4keras总能算比较灵活地编写各种Transformer结构的模型了,比如GPT2T5等都已经集成在里边了。

GPT2科普

GPT,相信很多读者都听说过它了,简单来说,它就是一个基于Transformer结构的语言模型,源自论文《GPT:Improving Language Understanding by Generative Pre-Training》,但它又不是为了做语言模型而生,它是通过语言模型来预训练自身,然后在下游任务微调,提高下游任务的表现。它是“Transformer + 预训练 + 微调”这种模式的先驱者,相对而言,BERT都算是它的“后辈”,而GPT2,则是GPT的升级版——模型更大,训练数据更多——模型最大版的参数量达到了15亿。

点击阅读全文...

9 Mar

Seq2Seq中Exposure Bias现象的浅析与对策

前些天笔者写了《CRF用过了,不妨再了解下更快的MEMM?》,里边提到了MEMM的局部归一化和CRF的全局归一化的优劣。同时,笔者联想到了Seq2Seq模型,因为Seq2Seq模型的典型训练方案Teacher Forcing就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。

经典的Seq2Seq模型图示

经典的Seq2Seq模型图示

本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作《玩转Keras之seq2seq自动生成标题》《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》

本文的内容大致为:

1、Exposure Bias的成因分析及例子;

2、简单可行的缓解Exposure Bias问题的策略。

点击阅读全文...