1 Nov

月底回家看彗星C/2012 S1 (ISON)

今年的天象中的“重头戏”——C/2012 S1 (ISON)彗星将在月底闪亮登场!

ISON_Comet_captured_by_HST,_April_10-11,_2013

ISON_Comet_captured_by_HST,_April_10-11,_2013

先贴出来自scully.cfa.harvard.edu的数据:

Date TT R. A. (2000) Decl. Delta r Elong. Phase m1 m2
2013 11 24 14 45 42.7 -18 53 56 0.8693 0.3002 17.1 104.3 3.0
2013 11 25 15 01 27.3 -20 05 10 0.8819 0.2551 14.3 107.0 2.5
2013 11 26 15 18 04.6 -21 09 58 0.8998 0.2058 11.4 109.3 1.8
2013 11 27 15 35 58.3 -22 05 30 0.9244 0.1502 8.2 110.4 0.7
2013 11 28 15 56 28.2 -22 43 29 0.9594 0.0826 4.6 106.9 -1.3
2013 11 29 16 23 17.5 -19 52 57 0.9762 0.0322 1.8 107.7 -4.5
2013 11 30 16 21 22.4 -16 20 32 0.9125 0.1145 5.3 127.4 -0.2
2013 12 01 16 19 11.8 -13 59 07 0.8681 0.1757 8.1 128.1 1.2
2013 12 02 16 17 23.9 -11 56 02 0.8309 0.2281 10.6 127.3 2.0
2013 12 03 16 15 54.3 -10 00 54 0.7980 0.2754 13.0 126.1 2.5

点击阅读全文...

25 Jul

【翻译】星空之夜:夏季恒星的色彩

笔录:在假期基本上是没有什么机会接触到英语的,平时看的数学物理书一般都是中文版的,因为现在学得还很浅,很少会有非找英语资料不可的时候。不过英语的重要性不言而喻,因此多练习一下还是必须的。突然想起很久没有翻译过文章了,就到《科学美国人》杂志上找了一篇有关夏季星空的小短文来练练笔。在此献丑了。

这个夏天的星空之夜,观星爱好者可以看到恒星发出彩虹般的色彩。
By Joe Rao and SPACE.com

点击阅读全文...

8 Apr

浅谈引力助推

这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。

相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。

16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。

点击阅读全文...

6 Jan

2013年全年天象

Astronomy Calendar of Celestial Events
2013年全年天象

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

2012年版本

日期 星期 时刻 天象

一月
01 二 金星:20.9° W
02 三 08:59 地球过近日点: 0.9833 AU
03 四 21:33 象限仪座流星雨极大: ZHR = 120
05 六 11:58 下弦月
06 日 03:54 月合角宿一(Spica): 0.6° N

点击阅读全文...

18 Dec

黑洞融合的简单模拟

在天文爱好者眼中,黑洞是一个球体,其半径为$\frac{2GM}{c^2}$;这是广义相对论的施瓦兹黑洞的结果,也从经典力学推导推导出来,虽然用经典力学是错误的,但是对于多数的天文爱好者(包括笔者)来说,这是目前唯一的一种可行的理解方法(广义相对论那些复杂推导会让我们很崩溃的)。当然,事实上,黑洞不是一个球体,它只是一个密度很大的点。至于密度有多大,目前公认的说法是无穷大,但是严格的物理是不接受这个说法的,或者说,物理是不会接受任何无穷大的说法,所以现在积极发展量子引力理论来统一相对论和量子力学,不过这是另话了。$\frac{2GM}{c^2}$只不过是黑洞的视界,视界之内,我们就什么也不知道了。本文主要就从经典力学的角度探讨一下两个黑洞的合并过程中其视界的变化。读者将会发现,这些视界的形状相当有趣。

经典力学中的黑洞是这样定义的:天体表面的逃逸速度超过了光速,于是连光都无法逃脱,所以这个“洞”就很黑。也就是说,光子的总能量(引力势能与动能之和,经典力学意义下的)要为负,负数表示受到束缚。用数学公式来讲,就是:

$$\frac{1}{2}mc^2 - \frac{GM_1 m}{r_1}-\frac{GM_2 m}{r_2}-...-\frac{GM_n m}{r_n} \leq 0$$

点击阅读全文...

16 Nov

天体力学巨匠——拉普拉斯

本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。

天体力学巨匠——拉普拉斯

天体力学巨匠——拉普拉斯

作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。

首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。

神秘的少年时期

由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。

点击阅读全文...

24 Oct

行星密度与其公转周期(更新)

===我与《天文爱好者》不得不说的故事===

去年在订阅2012年的《天文爱好者》时,考虑到之后就要上大学了,所以只是订了半年,因此过了今年六月我就没有看新的《天文爱好者》了。暑假的两个月,还有九月、十月,将近四个月没有看它了,我本以为我已经适应了没有天爱的日子。

大概一个星期前,我在天爱的淘宝网重新买了最近四个月的《天文爱好者》,18日下午,我再见了它。那天晚上,我突然觉得很感动,有种感慨万千的感觉。虽然这么久没有看了,但是再看的感觉是如此的熟悉,如此的温馨。我原来觉得天文只是我的一个业余兴趣,如同生物化学那样,但在那瞬间我明白了我真的爱着天文,而且时间和空间的距离并不能减少我的爱!在那时,我决定了,我一定要从事天文相关专业——虽然我只是一个数学系学生

==========行星周期下限==========

(2012.10.25:zwhzjh提出攝动力公式有错误,修正了攝动力的计算公式,之前写少了一个因子2,还有在最后的实际检验时,为了追求结果的合理性,忽略了方法的科学性,现在已经进行了修正,欢迎各位提更多意见。)

首颗被发现的系外行星

首颗被发现的系外行星

本文要探讨的东西是我在阅读《天文爱好者》的时候偶然发现的。在发现系外行星以前,人们通常都认为像木星这样的气态巨行星,公转周期都应该在十年以上。因此当瑞士天文学家米歇尔·迈耶和迪戴尔·邱洛兹发现第一颗系外行星时,他们简直无法确信自己的发现,因为这颗类木行星的公转周期只有短短的4.2天!但是经过确认,这的确是一颗系外行星,颠覆了过去的看法。我饶有兴致地研究下去,企图推导出某一密度行星的公转周期下限

各位读者不妨先估计一下,它会与什么物理量有关?行星质量?母星质量?还是...?

点击阅读全文...

1 May

相对论、对称和第四维

这篇文章其实在年初就完成了。

众所周知,我们生活在一个平坦的世界中。正如我们能够感受到的那样,在这个被称为“欧几里得平直空间”的世界里,空间里两点间的最短曲线是两点间的直线段,空间里的任意直角三角形都满足勾股定理,每个物体都有着自己的长、宽、高,它们都随着时间的流逝而运动着。这种世界观把时间独立于空间之外,作为一个独特的研究对象。但是自爱因斯坦在1905年发表狭义相对论以来,我们的宇宙就被描述成为了由三维空间和一维时间组成的“四维时空”,在这里,时间和空间的地位是等价的。不少同好们也许会感到非常困惑:即使证明了时间与空间的确存在着某种联系,也不必要把时间描述成是世界的一维吧?在我们的感官里,时间明明就和空间的三维差别甚大,时间和空间怎么能够等同起来呢?其实答案很简单:为了美。把时间看成与空间等价的一维之后,整个力学体系体现出一种前所未有的对称美,这种美不仅让人赏心悦目,而且极大地方便了我们进一步处理问题。

对称

点击阅读全文...