农村的孩子免不了常做家务,当然我家也没有什么特别沉重的家务,通常都是扫地、做饭、洗菜这些简单的活儿。说到洗菜,洗完菜后总喜欢边放水边搅水,然后就在水面上形成一个颇为有趣的漩涡。现在我们从数学物理的角度来分析一下这个漩涡。
在讲洗手盆的漩涡之前,我们先来看一下一个比较类似的、更古老的问题——牛顿的旋转液面问题。牛顿假设有一个水桶(假设为圆柱形吧,但这不重要),水桶在绕自己的中轴线匀角速度旋转,直到桶内的水也随着匀角速度旋转(即水与水桶相对静止),此时水的液面形状是凹的,我们来看看该液面的形状。
牛顿的水桶
要分析形状,我们还要回顾之前提到过的流体静力学平衡:
http://kexue.fm/archives/1964/
很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:
达到流体静力平衡时,流体的面必定是一个等势面。
这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$
这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!
关于“平衡态公理”的更正与思考
By 苏剑林 | 2013-02-03 | 20396位读者 | 引用在《自然极值》系列文章中,我引用了《数学方法论与解题研究》(张雄,李得虎编著)中提到的“平衡态公理”,并用它来解决了一些数学物理问题。平衡态公理讲的是系统的平衡状态总是在势能取极(小)值时取到,简单来讲就是自然界总向势能更低的方向发展,比如“水往低处流”。这在经典力学中本身是没有任何问题的,但在有些时候,我们在应用的时候可能会不自觉地将它想象成为“系统的平衡状态总是在总能量取极(小)值时取到”。然而,这却是不正确的。本文就是要探讨这个问题。
先来看看平衡态公理的来源。从最小作用量原理出发,考虑保守系统,每一个系统都应该对应着一个取极值的作用量S:
$$S=\int_{t_1}^{t_2} L(x,\dot{x})dt$$
抛物线内一根定长的弦
By 苏剑林 | 2012-06-30 | 33126位读者 | 引用[问题解答]木杆平衡
By 苏剑林 | 2012-01-21 | 56786位读者 | 引用地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 62472位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
最近评论