17 Nov

[欧拉数学]凸多面体的面、顶、棱公式

莱昂哈德·欧拉

莱昂哈德·欧拉

作为数学史上最高产的数学家(似乎没有之一),欧拉的研究几乎涉及了所有数学领域,包括数论、图论、微积分等,同时他还是一个物理学家,他与拉格朗日首创的变分法使得经典力学的研究达到了一个新的高度。欧拉具有惊人的计算能力和数学直觉,这对他的数学研究帮助极大。现在在很多领域,我们都可以看到不少以欧拉命名的公式、定理。欧拉在数学上极为高产,而且得出了相当多的正确结论,但其中有相当多的结论只是来源于他的数学直觉(创造性思维)以及类比推理,这并非欧拉不追求严谨,而是由于当时数学知识的局限性,难以严密化。还有,研究的顺序是:先得出答案,然后才论证答案!

再者,创造性思维往往令人叫绝,能更加促进我们的思维能力。过多地考虑严格性和技术细节,通常都妨碍了我们得出正确的答案。正如《解题的艺术》中说道粗略而有灵感的思想可能会引出严格证明;而有时,严格的证明会完全淡化论证的精髓。因此,我们不必在意欧拉证明的不严谨,反而,它是一次完美的视觉与思维享受。正因如此,一些绝妙、非严密、(在某种程度上)不正确的但同时得出了正确结果的数学论证,就被称为“欧拉数学”。事实上,任何人、任何研究都必须经过“欧拉数学”这一不严密的早期阶段。

------------华丽的分割线----------------

下面是一条关于凸多面体的面、顶、棱公式,它属于拓扑学的内容,我们称之为“欧拉公式”。(当然,公式是欧拉的,论证过程只是笔者粗糙地给出的)。

点击阅读全文...

30 Jul

IMO42-1,我也会做几何题

七月再次“农忙”,农村里要插秧了,播下种苗,等待再次收获的季节^_^

我一直觉得我的数学能力偏向于分析计算而不擅长于几何,纵使遇到几何问题,也是满脑子的解析几何做法,没有纯几何的美。而这几天为了加强数学竞赛题目的能力,我一直在看IMO的题目,并且企图独立做出一些题目,但都无果。我比较感兴趣的是不等式,我感觉一道简单的式子,不用太多的文字就可以讲清楚的题目非不等式莫属,但是IMO的不等式题实在高深,我还没有能够独立做出一道来(参考答案可以看懂,只是想不到思路),或许是我在努力追求统一的方法而不肯研究那些特定的技巧的原因吧。不料今天看了一下2001年IMO的几何题目,发现我可能将它做出来,于是研究了一会,最终很幸运地做了出来。虽然不是最简单的方法,但也与大家分享一下。

IMO-42-1

IMO-42-1

如图,O是锐角三角形ABC的外心,AP是三角形的垂线段,∠B-∠C不小于30°。证明∠BAC+∠BOP < 90°

点击阅读全文...

12 Aug

一个神秘而糟糕的图形

四维空间

四维空间

是不是觉得一团糟?不要急,慢慢看...(可以先保存下来)

点击阅读全文...

27 Jun

威力巨大的“有向线段”

向量

向量

向量,又称矢量,定义为线性空间中需要大小和方向才能完整表示的一个量。而对于我们来说,还是使用最简单的概念比较合适:向量就是“有向线段”。向量这一概念,来源于物理,而又不仅仅应用于物理。向量的出现,使得几何学和物理学的发展又多了一个强有力的工具,记得有一句这样的话:“对数的出现,延长了天文学家的寿命。”而我可以毫不夸张地说,向量的发展,也在不断地延长着数学家和物理学家的寿命!

点击阅读全文...