Transformer升级之路:18、RoPE的底数选择原则
By 苏剑林 | 2024-05-29 | 141616位读者 | 引用我们知道,在RoPE中频率的计算公式为$\theta_i = b^{-2i/d}$,底数$b$默认值为10000。目前Long Context的主流做法之一是,先在$b=10000$上用短文本预训练,然后调大$b$并在长文本微调,其出发点是《Transformer升级之路:10、RoPE是一种β进制编码》里介绍的NTK-RoPE,它本身有较好长度外推性,换用更大的$b$再微调相比不加改动的微调,起始损失更小,收敛也更快。该过程给人的感觉是:调大$b$完全是因为“先短后长”的训练策略,如果一直都用长文本训练似乎就没必要调大$b$了?
上周的论文《Base of RoPE Bounds Context Length》试图回答这个问题,它基于一个期望性质研究了$b$的下界,由此指出更大的训练长度本身就应该选择更大的底数,与训练策略无关。整个分析思路颇有启发性,接下来我们一起来品鉴一番。
局部余弦相似度大,全局余弦相似度一定也大吗?
By 苏剑林 | 2024-01-09 | 33806位读者 | 引用在分析模型的参数时,有些情况下我们会将模型的所有参数当成一个整体的向量,有些情况下我们则会将不同的参数拆开来看。比如,一个7B大小的LLAMA模型所拥有的70亿参数量,有时候我们会将它当成“一个70亿维的向量”,有时候我们会按照模型的实现方式将它看成“数百个不同维度的向量”,最极端的情况下,我们也会将它看成是“七十亿个1维向量”。既然有不同的看待方式,那么当我们要算一些统计指标时,也就会有不同的计算方式,即局部计算和全局计算,这引出了局部计算的指标与全局计算的指标有何关联的问题。
本文我们关心两个向量的余弦相似度。如果两个大向量的维度被拆成了若干组,同一组对应的子向量余弦相似度都很大,那么两个大向量的余弦相似度是否一定就大呢?答案是否定的。特别地,这还跟著名的“辛普森悖论”有关。
问题背景
这个问题源于笔者对优化器的参数增量导致的损失函数变化量的分析。具体来说,假设优化器的更新规则是:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \boldsymbol{u}_t\end{equation}
让炼丹更科学一些(一):SGD的平均损失收敛
By 苏剑林 | 2023-12-19 | 35556位读者 | 引用很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。
在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。
问题设置
设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}
logsumexp运算的几个不等式
By 苏剑林 | 2022-05-10 | 22092位读者 | 引用$\text{logsumexp}$是机器学习经常遇到的运算,尤其是交叉熵的相关实现和推导中都会经常出现,同时它还是$\max$的光滑近似(参考《寻求一个光滑的最大值函数》)。设$x=(x_1,x_2,\cdots,x_n)$,$\text{logsumexp}$定义为
\begin{equation}\text{logsumexp}(x)=\log\sum_{i=1}^n e^{x_i}\end{equation}
本文来介绍$\text{logsumexp}$的几个在理论推导中可能用得到的不等式。
基本界
记$x_{\max} = \max(x_1,x_2,\cdots,x_n)$,那么显然有
\begin{equation}e^{x_{\max}} < \sum_{i=1}^n e^{x_i} \leq \sum_{i=1}^n e^{x_{\max}} = ne^{x_{\max}}\end{equation}
各端取对数即得
\begin{equation}x_{\max} < \text{logsumexp}(x) \leq x_{\max} + \log n\end{equation}
输入梯度惩罚与参数梯度惩罚的一个不等式
By 苏剑林 | 2021-12-11 | 23187位读者 | 引用在本博客中,已经多次讨论过梯度惩罚相关内容了。从形式上来看,梯度惩罚项分为两种,一种是关于输入的梯度惩罚$\Vert\nabla_{\boldsymbol{x}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《对抗训练浅谈:意义、方法和思考(附Keras实现)》、《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》等文章中我们讨论过,另一种则是关于参数的梯度惩罚$\Vert\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《从动力学角度看优化算法(五):为什么学习率不宜过小?》、《我们真的需要把训练集的损失降低到零吗?》等文章我们讨论过。
在相关文章中,两种梯度惩罚都声称有着提高模型泛化性能的能力,那么两者有没有什么联系呢?笔者从Google最近的一篇论文《The Geometric Occam's Razor Implicit in Deep Learning》学习到了两者的一个不等式,算是部分地回答了这个问题,并且感觉以后可能用得上,在此做个笔记。
最终结果
假设有一个$l$层的MLP模型,记为
\begin{equation}\boldsymbol{h}^{(t+1)} = g^{(t)}(\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)})\end{equation}
其中$g^{(t)}$是当前层的激活函数,$t\in\{1,2,\cdots,l\}$,并记$\boldsymbol{h}^{(1)}$为$\boldsymbol{x}$,即模型的原始输入,为了方便后面的推导,我们记$\boldsymbol{z}^{(t+1)}=\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)}$;参数全体为$\boldsymbol{\theta}=\{\boldsymbol{W}^{(1)},\boldsymbol{b}^{(1)},\boldsymbol{W}^{(2)},\boldsymbol{b}^{(2)},\cdots,\boldsymbol{W}^{(l)},\boldsymbol{b}^{(l)}\}$。设$f$是$\boldsymbol{h}^{(l+1)}$的任意标量函数,那么成立不等式
\begin{equation}\Vert\nabla_{\boldsymbol{x}} f\Vert^2\left(\frac{1 + \Vert \boldsymbol{h}^{(1)}\Vert^2}{\Vert\boldsymbol{W}^{(1)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(1)}\Vert^2}+\cdots+\frac{1 + \Vert \boldsymbol{h}^{(l)}\Vert^2}{\Vert\boldsymbol{W}^{(l)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(l)}\Vert^2}\right)\leq \Vert\nabla_{\boldsymbol{\theta}} f\Vert^2\label{eq:f}\end{equation}
积分估计的极值原理——变分原理的初级版本
By 苏剑林 | 2016-02-15 | 35211位读者 | 引用如果一直关注科学空间的朋友会发现,笔者一直对极值原理有偏爱。比如,之前曾经写过一系列《自然极值》的文章,介绍一些极值问题和变分法;在物理学中,笔者偏爱最小作用量原理的形式;在数据挖掘中,笔者也因此对基于最大熵原理的最大熵模型有浓厚的兴趣;最近,在做《量子力学与路径积分》的习题中,笔者也对第十一章所说的变分原理产生了很大的兴趣。
对于一样新东西,笔者的学习方法是以一个尽可能简单的例子搞清楚它的原理和思想,然后再逐步复杂化,这样子我就不至于迷失了。对于变分原理,它是估算路径积分的一个很强大的方法,路径积分是泛函积分,或者说,无穷维积分,那么很自然想到,对于有限维的积分估计,比如最简单的一维积分,有没有类似的估算原理呢?事实上是有的,它并不复杂,弄懂它有助于了解变分原理的核心思想。很遗憾,我并没有找到已有的资料描述这个简化版的原理,可能跟我找的资料比较少有关。
从高斯型积分出发
变分原理本质上是Jensen不等式的应用。我们从下述积分出发
$$\begin{equation}\label{jifen}I(\epsilon)=\int_{-\infty}^{\infty}e^{-x^2-\epsilon x^4}dx\end{equation}$$
有趣的求极限题:随心所欲的放缩
By 苏剑林 | 2015-03-28 | 44503位读者 | 引用昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。
求解
首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$
勒贝格(Lebesgue)控制收敛定理
By 苏剑林 | 2015-01-16 | 83708位读者 | 引用实变函数中有一个勒贝格控制收敛定理,一般认为它是判断积分和取极限可交换的很好用的方法。勒贝格控制收敛定理是说,如果定义在集合$E$上的函数列$\left\{f_n(x)\right\}$满足$|f_n(x)|\leq F(x)$,而$F(x)$在$E$上可积,那么积分和取极限就可以交换,即
$$\lim_{n\to\infty}\left(\int_E f_n (x)dx\right)=\int_E \left(\lim_{n\to\infty}f_n (x)\right)dx$$
本文不打算谈该定理的证明,只是谈谈该定理的应用相关的话题。首先,请有兴趣的读者,做做以下题目:
$$\lim_{n\to\infty}\left(\int_0^1 \frac{n^2 x}{1+n^4 x^4}dx\right)$$
最近评论