在数学分析的级数理论中,有一类常见的题目,其中涉及到
$$\cos\theta+\cos 2\theta+\dots+\cos n\theta\tag{1}$$
和
$$\sin\theta+\sin 2\theta+\dots+\sin n\theta\tag{2}$$
之类的正弦或者余弦级数的求和,主要是证明该和式有界。而为了证明这一点,通常是把和式的通项求出来。当然,该级数在物理中也有重要作用,它表示$n$个相同振子的合振幅。在我们的数学分析教材中,通常是将级数乘上一项$\sin\frac{\theta}{2}$,然后利用积化和差公式完成。诚然,如果仅限在实数范围内考虑,这有可能是唯一的推导技巧的。但是这样推导的运算过程本身不简单,而且也不利于记忆,在大二的时候我就为此感到很痛苦。前几天在看费曼的书的时候,想到了一种利用复数的推导技巧。很奇怪,这个技巧是如此简单——写出来显得这篇文章都有点水了——可是我以前居然一直没留意到!看来功力尚浅,需多多修炼呀。
最近的我的主要学习是在研究路径积分,在推导路径积分的一种新的变换方法(或者是一个新的视角吧),但是有道坎还是迈不过去,因此blog中也一直更新寥寥。说到积分与微分,这两个本是互逆的东西,但是在复数的统一之下,它们两个去可以相互转化。比如说,薛定谔方程是量子力学的微分形式,而路径积分实际上可以说是量子力学的积分形式,这让我有些想法,是不是任何微分形式的数学都存在一个积分形式的版本呢?如果是,是微分版本优还是积分版本优?
在数学分析中,我们会感觉到求导会比求积分容易很多,求导有现成的公式等等。但是微分有个最大的缺点,它是多分量的,比如,势函数是一个标量,但是微分(求梯度)之后就变成了三分量的矢量(即作用力),多分量事实上是不好处理了,为了处理这类问题,又引入了大量的算符。积分的特点在于它的标量性,也许计算很复杂,但是思想确实容易把握的,我更喜欢积分形式的理论(比如作用量原理、路径积分等。)
说到数学分析中常见而又著名的定积分,不得不提到以下三角函数积分了。
$$\int_0^{\pi/2} \sin^{2n} \theta d\theta$$
不难证明,它也等于
$$\int_0^{\pi/2} \cos^{2n} \theta d\theta$$
费曼积分法(6):教科书上的两道练习题
By 苏剑林 | 2013-03-24 | 33310位读者 | 引用昨天在研究一个最优化问题时,遇到了一个这样的积分:
$$\int \frac{1}{\cos^3 \theta} d\theta$$
然后就顺便研究了一下这种类型的函数的积分。一般来讲,这类积分可以写成$\int cos^n \theta d\theta$或$\int sin^n \theta d\theta$,其中n是一个整数。
首先我们来解决n=1的情况,我们很容易就有$\int cos\theta d\theta=sin\theta +C$或$\int sin\theta d\theta=-cos\theta +C$,这是一个基本的结果。
如果n是大于1的正整数,那么可以用递推的方法来搞定:
cos 1°的根式表达式
By 苏剑林 | 2011-06-26 | 57664位读者 | 引用BoJone记得自己第一次接触三角函数大概是小学五、六年级的时候,那时候我拿来了表姐的初中数学书来看。看到三角函数一章后,饶有兴致,希望能够找到一个根据角度来求三角函数值的方法,可是书本上只是教我去用计算器算和查表,这让我这个爱好计算的孩子大失所望。这个问题直到高一才得以解决,原来这已经涉及到了微积分中的泰勒级数了...
我记得为了求任意角度的三角函数值,我曾经根据30°、45°和60°的正弦值拟合过一条近似公式出来:
$$\sin A \approx \sqrt{\frac{A}{60}-1/4}$$
其中A以角度为单位,大致适用于25°~60°,精度好像有两位小数。当然,这个结果在今天看来是很粗糙的,但是这毕竟是我的“小学的作品”!在此留念一翻。
备忘:椭圆坐标与复三角函数
By 苏剑林 | 2011-04-10 | 48817位读者 | 引用三次方程的三角函数解法
By 苏剑林 | 2010-08-08 | 84239位读者 | 引用对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。
储备
\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}
最近评论