基于Conv1D的光谱分类模型(一维序列分类)
By 苏剑林 | 2018-05-02 | 116895位读者 | 引用前段时间天池出了个天文数据挖掘竞赛——LAMOST光谱分类(将对应的光谱识别为4类中的一类),虽然没有奖金,但还是觉得挺有意思,所以就报名参加了。做了一段时间,成绩自我感觉还可以,然而最后我却忘记了(或者说根本就没留意到)初赛最后两天还有一步是提交新的测试集结果,然后就没有然后了,留下了一个未竟的模型,可谓“出师未捷身先死”,还是被自己弄死的~
后来跟其他参赛选手讨论了一下,发现其实我的这个模型还是不错的。当时我记得初赛第一名的成绩是0.83+,而我当时的成绩是0.82+,排名大概是第4、5左右,而且据说很多分数在0.8+的队伍都已经使用了融合模型,而我这0.82+的成绩仅仅是单模型的结果~在平时的群聊中发现也有不少朋友在做一维序列分类模型,而光谱分类本质上也就是一个一维的序列分类,所以分享一下模型,估计对相关朋友会有一定的参考价值。
模型
事实上也不是什么特别的模型,就是普通的一维卷积加残差,对于熟悉图像处理的朋友,这实在是再普通不过的结构了。
什么时候多进程的加速比可以大于1?
By 苏剑林 | 2019-10-27 | 58122位读者 | 引用多进程或者多线程等并行加速目前已经不是什么难事了,相信很多读者都体验过。一般来说,我们会有这样的结论:多进程的加速比很难达到1。换句话说,当你用10进程去并行跑一个任务时,一般只能获得不到10倍的加速,而且进程越多,这个加速比往往就越低。
要注意,我们刚才说“很难达到1”,说明我们的潜意识里就觉得加速比最多也就是1。理论上确实是的,难不成用10进程还能获得20倍的加速?这不是天上掉馅饼吗?不过我前几天确实碰到了一个加速比远大于1的例子,所以在这里跟大家分享一下。
词频统计
我的原始任务是统计词频:我有很多文章,然后我们要对这些文章进行分词,最后汇总出一个词频表出来。一般的写法是这样的:
tokens = {}
for text in read_texts():
for token in tokenize(text):
tokens[token] = tokens.get(token, 0) + 1
这种写法在我统计THUCNews全部文章的词频时,大概花了20分钟。
两千美元的汽车----世界最便宜汽车在印度上路!
By 苏剑林 | 2009-07-20 | 16347位读者 | 引用日全食多路联合直播频道
By 苏剑林 | 2009-07-18 | 17042位读者 | 引用鱼与熊掌兼得:融合检索和生成的SimBERT模型
By 苏剑林 | 2020-05-18 | 287058位读者 | 引用前段时间我们开放了一个名为SimBERT的模型权重,它是以Google开源的BERT模型为基础,基于微软的UniLM思想设计了融检索与生成于一体的任务,来进一步微调后得到的模型,所以它同时具备相似问生成和相似句检索能力。不过当时除了放出一个权重文件和示例脚本之外,未对模型原理和训练过程做进一步说明。在这篇文章里,我们来补充这部分内容。
UniLM
UniLM是一个融合NLU和NLG能力的Transformer模型,由微软在去年5月份提出来的,今年2月份则升级到了v2版本。我们之前的文章《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》就简单介绍过UniLM,并且已经集成到了bert4keras中。
UniLM的核心是通过特殊的Attention Mask来赋予模型具有Seq2Seq的能力。假如输入是“你想吃啥”,目标句子是“白切鸡”,那UNILM将这两个句子拼成一个:[CLS] 你 想 吃 啥 [SEP] 白 切 鸡 [SEP],然后接如图的Attention Mask:
智能家居之热水器零冷水技术原理浅析
By 苏剑林 | 2023-01-04 | 42479位读者 | 引用如果家庭使用单一的热水器集中供热水,那么当我们想要用热水时,往往需要先放一段时间的冷水,而如果放冷水时间比较长的话,就会比较影响体验。所谓零冷水,实际上就是想办法提前把热水管中的冷水排放掉,以达到(几乎)瞬间出热水的效果。事实上,零冷水并不是什么高大上的技术,但可能由于观念没跟上、理解上有误等原因,零冷水技术还没有在家庭中得到普及,不过随着大家对生活品质的要求越来越高,零冷水确实在慢慢流行起来了。
本文来简单分析一下零冷水技术的实现原理,包括各种方案的优缺点和自省DIY的参考思路。
写在前面
在文章开始,需要纠正很多人的一个错误观念:零冷水不是为了省钱,而是为了提升生活品质。如果你是省钱最大的心态,那么接下来的内容就可以不用看了,零冷水技术对你毫无价值。
美绘制太空引力高速路帮飞船穿越太阳系(图)
By 苏剑林 | 2009-09-13 | 19105位读者 | 引用你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。
其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......
最近评论