26 Jul

问世间质心(重心)知多少

均匀大圆挖去小圆后,求质心(重心)

均匀大圆挖去小圆后,求质心(重心)

不论在数学题目上,或者是物理应用中,我们总能够看到类似的题目:求一个规则物体挖去(或增加)一个规则物体后,其剩下部分的质心(重心)。

点击阅读全文...

2 Aug

【科学松鼠会】猫江湖(科学也是可以很有趣的)

fatcat-06-300x270

fatcat-06-300x270

不要认为科学是一门多么枯燥、深奥的的学科,只要有点创意,科学也可以有趣起来。这种创意并非来源于专业人员,而是来源于生活,来源于关注 ,来源于一颗好奇而勇敢的心。下面请看科学松鼠会推出的《猫江湖》。

我有一个梦想,这个种群将会觉醒,实现其立群信条的真谛:猫猫生而平等;

我有一个梦想,在食堂垃圾桶边,阉割猫和健全公猫能同席而坐,共叙兄弟情谊;

我有一个梦想,甚至连临时喂食点这个正义匿迹、压迫成风的地方,也将变成平等和自由的绿洲;

我有一个梦想,让天下的猫孩儿都有爸爸,我的四个孩子将在一个不是以他们的毛色,而是以健康优劣作为评判标准的国家里生活;

点击阅读全文...

5 Aug

日出东方,重逢,最美的风采

历时三年,经过三届评选,《日出东方》、《重逢》和《最美的风采》入围亚运会会歌候选歌曲。就BoJone而言,比较喜欢的事《日出东方》。最终结果如何?让我们拭目以待!

日出东方,我们在广州重逢,展示最美的风采

其中,《日出东方》的作曲是知名曲作家李海鹰,作词是朱海。歌曲名字与广州亚运标识五羊上方绚丽的太阳形象完全契合,体现了克服困难取得胜利的体育精神,同时也有亚运火炬薪火相传、永不熄灭的含义。《重逢》的作曲是捞仔,作词是徐荣凯。歌曲取名重逢,突出了亚运会不仅是亚洲的运动盛会,也是亚洲兄弟姐妹四年一次的盛大友谊聚会,亚洲虽然辽阔,但亚洲人民之间的深厚友谊缩短了彼此的距离。《最美的风采》则是由香港著名作曲家金培达作曲,广州知名音乐人陈小奇作词。歌曲将“花海”与“运动会”的意象巧妙地融为一体,彰显出广州作为“花城”及亚运会主办城市所具有的风采,及“和谐亚洲,激情盛会”的主题。

点击阅读全文...

8 Aug

三次方程的三角函数解法

对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。

储备

\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}

点击阅读全文...

7 Aug

旋转的弹簧将如何伸长(2)?

弹簧

弹簧

上一次我从密度的角度讨论了旋转的弹簧伸长的问题,由于对弹性形变等问题是初涉,所以花了好大功夫。这几天重新认识了一下胡克定律,并且从另外的角度给出了这道题目的一个相对简单的解法。在此把它记录下来,并写写我对弹性形变的一些粗浅看法。

在解答的过程中,我再次体验到了殊途同归的感觉,科学就是这样的奇妙,一个目的地往往有着不止一条道路,不同的道路会给我们不同的科学视觉,最终领略到不同的科学美景;多走几条路,更能够让我们从不同的角度领略美不胜收的科学,这也是众多旅游爱好者不辞千里地观赏美景的原因!

点击阅读全文...

16 Aug

《方程与宇宙》:拉格朗日点,复数,向量(五)

The New Calculation Of Lagrangian Point 4,5

上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)

对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...

点击阅读全文...

23 Sep

圆满的句号——汽车站的邂逅

21日,是我从北京回家的日子。上午一切都很顺利,很早就赶到机场了,而且飞机也没有晚点。然而,事情却出现了一点意外——

原来由于台风影响,广东正在下暴雨,于是,飞机在广州上空盘旋了半个多小时,本来16:00就可以下的飞机,却到了近17:00才下。庆幸的是,这一次我没有把行李托运,于是下机后马上飞奔门口,乘坐机场快巴。还好,赶上了17:10的快巴。又是两个小时的路程,19:00左右,我到了肇庆汽车总站...

汽车站的售票人员说现在回新兴最早的班车是20:10的,距离现在还有一个小时,我犹豫了一下:这让我等太久了吧...抱着侥幸的心态,我打车到了肇庆的桥西汽车站,希望那儿会有早一点的班车。然而,结果是失望的:途径新兴的车都没有了。这时,在我前边的一个女孩出声了——

点击阅读全文...

4 Oct

2010诺贝尔生理学或医学奖公布

资料图片:试管婴儿之父、英国科学家罗伯特-爱德华兹

资料图片:试管婴儿之父、英国科学家罗伯特-爱德华兹

诺贝尔奖委员会刚刚宣布,试管婴儿之父、英国科学家罗伯特-爱德华兹因其生育学研究获得今年诺贝尔生理学或医学奖,他的研究曾使400万人得以降生。

点击阅读全文...