Efficient GlobalPointer:少点参数,多点效果
By 苏剑林 | 2022-01-25 | 115482位读者 | 引用在《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》中,我们提出了名为“GlobalPointer”的token-pair识别模块,当它用于NER时,能统一处理嵌套和非嵌套任务,并在非嵌套场景有着比CRF更快的速度和不逊色于CRF的效果。换言之,就目前的实验结果来看,至少在NER场景,我们可以放心地将CRF替换为GlobalPointer,而不用担心效果和速度上的损失。
在这篇文章中,我们提出GlobalPointer的一个改进版——Efficient GlobalPointer,它主要针对原GlobalPointer参数利用率不高的问题进行改进,明显降低了GlobalPointer的参数量。更有趣的是,多个任务的实验结果显示,参数量更少的Efficient GlobalPointer反而还取得更好的效果。
大量的参数
这里简单回顾一下GlobalPointer,详细介绍则请读者阅读《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》。简单来说,GlobalPointer是基于内积的token-pair识别模块,它可以用于NER场景,因为对于NER来说我们只需要把每一类实体的“(首, 尾)”这样的token-pair识别出来就行了。
门控注意力单元(GAU)还需要Warmup吗?
By 苏剑林 | 2022-03-11 | 42271位读者 | 引用在文章《训练1000层的Transformer究竟有什么困难?》发布之后,很快就有读者问到如果将其用到《FLASH:可能是近来最有意思的高效Transformer设计》中的“门控注意力单元(GAU)”,那结果是怎样的?跟标准Transformer的结果有何不同?本文就来讨论这个问题。
先说结论
事实上,GAU是非常容易训练的模型,哪怕我们不加调整地直接使用“Post Norm + Xavier初始化”,也能轻松训练个几十层的GAU,并且还不用Warmup。所以关于标准Transformer的很多训练技巧,到了GAU这里可能就无用武之地了...
为什么GAU能做到这些?很简单,因为在默认设置之下,理论上$\text{GAU}(\boldsymbol{x}_l)$相比$\boldsymbol{x}_l$几乎小了两个数量级,所以
\begin{equation}\boldsymbol{x}_{l+1} = \text{LN}(\boldsymbol{x}_l + \text{GAU}(\boldsymbol{x}_l))\approx \boldsymbol{x}_l\end{equation}
RoFormerV2:自然语言理解的极限探索
By 苏剑林 | 2022-03-21 | 56547位读者 | 引用大概在1年前,我们提出了旋转位置编码(RoPE),并发布了对应的预训练模型RoFormer。随着时间的推移,RoFormer非常幸运地得到了越来越多的关注和认可,比如EleutherAI新发布的60亿和200亿参数的GPT模型中就用上了RoPE位置编码,Google新提出的FLASH模型论文中则明确指出了RoPE对Transformer效果有明显的提升作用。
与此同时,我们也一直在尝试继续加强RoFormer模型,试图让RoFormer的性能“更上一层楼”。经过近半年的努力,我们自认为取得了还不错的成果,因此将其作为“RoFormerV2”正式发布:
GAU-α:尝鲜体验快好省的下一代Attention
By 苏剑林 | 2022-04-22 | 45475位读者 | 引用在《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了GAU(Gated Attention Unit,门控线性单元),在这里笔者愿意称之为“目前最有潜力的下一代Attention设计”,因为它真正达到了“更快(速度)、更好(效果)、更省(显存)”的特点。
然而,有些读者在自己的测试中得到了相反的结果,比如收敛更慢、效果更差等,这与笔者的测试结果大相径庭。本文就来分享一下笔者自己的训练经验,并且放出一个尝鲜版“GAU-α”供大家测试。
GAU-α
首先介绍一下开源出来的“GAU-α”在CLUE任务上的成绩单:
$$\small{\begin{array}{c|ccccccccccc}
\hline
& \text{iflytek} & \text{tnews} & \text{afqmc} & \text{cmnli} & \text{ocnli} & \text{wsc} & \text{csl} & \text{cmrc2018} & \text{c3} & \text{chid} & \text{cluener}\\
\hline
\text{BERT} & 60.06 & 56.80 & 72.41 & 79.56 & 73.93 & 78.62 & 83.93 & 56.17 & 60.54 & 85.69 & 79.45 \\
\text{RoBERTa} & 60.64 & \textbf{58.06} & 74.05 & 81.24 & 76.00 & \textbf{87.50} & 84.50 & 56.54 & 67.66 & 86.71 & 79.47\\
\text{RoFormer} & 60.91 & 57.54 & 73.52 & 80.92 & \textbf{76.07} & 86.84 & 84.63 & 56.26 & 67.24 & 86.57 & 79.72\\
\text{RoFormerV2}^* & 60.87 & 56.54 & 72.75 & 80.34 & 75.36 & 80.92 & 84.67 & 57.91 & 64.62 & 85.09 & \textbf{81.08}\\
\hline
\text{GAU-}\alpha & \textbf{61.41} & 57.76 & \textbf{74.17} & \textbf{81.82} & 75.86 & 79.93 & \textbf{85.67} & \textbf{58.09} & \textbf{68.24} & \textbf{87.91} & 80.01\\
\hline
\end{array}}$$
在bert4keras中使用混合精度和XLA加速训练
By 苏剑林 | 2022-04-28 | 25567位读者 | 引用之前笔者一直都是聚焦于模型的构思和实现,鲜有关注模型的训练加速,像混合精度和XLA这些技术,虽然也有听过,但没真正去实践过。这两天折腾了一番,成功在bert4keras中使用了混合精度和XLA来加速训练,在此做个简单的总结,供大家参考。
本文的多数经验结论并不只限于bert4keras中使用,之所以在标题中强调bert4keras,只不过bert4keras中的模型实现相对较为规整,因此启动这些加速技巧所要做的修改相对更少。
实验环境
本文的实验显卡为3090,使用的docker镜像为nvcr.io/nvidia/tensorflow:21.09-tf1-py3,其中自带的tensorflow版本为1.15.5。另外,实验所用的bert4keras版本为0.11.3。其他环境也可以参考着弄,要注意有折腾精神,不要指望着无脑调用。
顺便提一下,3090、A100等卡只能用cuda11,而tensorflow官网的1.15版本是不支持cuda11的,如果还想用tensorflow 1.x,那么只能用nvidia亲自维护的nvidia-tensorflow,或者用其构建的docker镜像。用nvidia而不是google维护的tensorflow,除了能让你在最新的显卡用上1.x版本外,还有nvidia专门做的一些额外优化,具体文档可以参考这里。
多标签“Softmax+交叉熵”的软标签版本
By 苏剑林 | 2022-05-07 | 46836位读者 | 引用(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)
在《将“Softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个用于多标签分类的损失函数:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(1 + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:original}\end{equation}
这个损失函数有着单标签分类中“Softmax+交叉熵”的优点,即便在正负类不平衡的依然能够有效工作。但从这个损失函数的形式我们可以看到,它只适用于“硬标签”,这就意味着label smoothing、mixup等技巧就没法用了。本文则尝试解决这个问题,提出上述损失函数的一个软标签版本。
巧妙联系
多标签分类的经典方案就是转化为多个二分类问题,即每个类别用sigmoid函数$\sigma(x)=1/(1+e^{-x})$激活,然后各自用二分类交叉熵损失。当正负类别极其不平衡时,这种做法的表现通常会比较糟糕,而相比之下损失$\eqref{eq:original}$通常是一个更优的选择。
熵不变性Softmax的一个快速推导
By 苏剑林 | 2022-04-11 | 17972位读者 | 引用在文章《从熵不变性看Attention的Scale操作》中,我们推导了一版具有熵不变性质的注意力机制:
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\kappa \log n}{d}QK^{\top}\right)V\label{eq:a}\end{equation}
可以观察到,它主要是往Softmax里边引入了长度相关的缩放因子$\log n$来实现的。原来的推导比较繁琐,并且做了较多的假设,不利于直观理解,本文为其补充一个相对简明快速的推导。
推导过程
我们可以抛开注意力机制的背景,直接设有$s_1,s_2,\cdots,s_n\in\mathbb{R}$,定义
$$p_i = \frac{e^{\lambda s_i}}{\sum\limits_{i=1}^n e^{\lambda s_i}}$$
你的语言模型有没有“无法预测的词”?
By 苏剑林 | 2022-04-20 | 19974位读者 | 引用众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。
当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)
是否存在
ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。
最近评论