12 Jan

一般来说,文本匹配有交互式(Interaction-based)和特征式(Representation-based)两种实现方案,其中交互式是指将两个文本拼接在一起当成单文本进行分类,而特征式则是指两个句子分别由编码器编码为句向量后再做简单的融合处理(算cos值或者接一个浅层网络)。通常的结论是,交互式由于使得两个文本能够进行充分的比较,所以它准确性通常较好,但明显的缺点是在检索场景的效率较差;而特征式则可以提前计算并缓存好句向量,所以它有着较高的效率,但由于句子间的交互程度较浅,所以通常效果不如交互式。

上一篇文章笔者介绍了CoSENT,它本质上也是一种特征式方案,并且相比以往的特征式方案效果有所提高。于是笔者的好胜心就上来了:CoSENT能比得过交互式吗?特征式相比交互式的差距有多远呢?本文就来做个比较。

自动阈值

在文章《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,我们评测CoSENT所用的指标是Spearman系数,它是一个只依赖于预测结果相对顺序的指标,不依赖于阈值,比较适合检索场景的评测。但如果评测指标是accuracy或者F1这些分类指标,则必须确定一个阈值,将预测结果大于这个数的预测结果视为正、小于则为负,然后才能计算指标。在二分类的场景,我们用二分法就可以有效地确定这个阈值。

点击阅读全文...

22 Apr

GAU-α:尝鲜体验快好省的下一代Attention

《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了GAU(Gated Attention Unit,门控线性单元),在这里笔者愿意称之为“目前最有潜力的下一代Attention设计”,因为它真正达到了“更快(速度)、更好(效果)、更省(显存)”的特点。

然而,有些读者在自己的测试中得到了相反的结果,比如收敛更慢、效果更差等,这与笔者的测试结果大相径庭。本文就来分享一下笔者自己的训练经验,并且放出一个尝鲜版“GAU-α”供大家测试。

GAU-α

首先介绍一下开源出来的“GAU-α”在CLUE任务上的成绩单:
$$\small{\begin{array}{c|ccccccccccc}
\hline
& \text{iflytek} & \text{tnews} & \text{afqmc} & \text{cmnli} & \text{ocnli} & \text{wsc} & \text{csl} & \text{cmrc2018} & \text{c3} & \text{chid} & \text{cluener}\\
\hline
\text{BERT} & 60.06 & 56.80 & 72.41 & 79.56 & 73.93 & 78.62 & 83.93 & 56.17 & 60.54 & 85.69 & 79.45 \\
\text{RoBERTa} & 60.64 & \textbf{58.06} & 74.05 & 81.24 & 76.00 & \textbf{87.50} & 84.50 & 56.54 & 67.66 & 86.71 & 79.47\\
\text{RoFormer} & 60.91 & 57.54 & 73.52 & 80.92 & \textbf{76.07} & 86.84 & 84.63 & 56.26 & 67.24 & 86.57 & 79.72\\
\text{RoFormerV2}^* & 60.87 & 56.54 & 72.75 & 80.34 & 75.36 & 80.92 & 84.67 & 57.91 & 64.62 & 85.09 & \textbf{81.08}\\
\hline
\text{GAU-}\alpha & \textbf{61.41} & 57.76 & \textbf{74.17} & \textbf{81.82} & 75.86 & 79.93 & \textbf{85.67} & \textbf{58.09} & \textbf{68.24} & \textbf{87.91} & 80.01\\
\hline
\end{array}}$$

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...

28 Mar

Google新作试图“复活”RNN:RNN能否再次辉煌?

当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性AttentionFLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。

那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?

点击阅读全文...

12 May

Transformer升级之路:9、一种全局长度外推的新思路

说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。

尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。

方法回顾

长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。

点击阅读全文...

14 Aug

Transformer升级之路:13、逆用Leaky ReRoPE

上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。

总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。

回顾

让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\
1 & 0 & \\
2 & 1 & 0 &\\
3 & 2 & 1 & 0 & \\
\ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 1} & \small{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\
\end{pmatrix}\label{eq:rope}\end{equation}

点击阅读全文...

20 Nov

Transformer升级之路:15、Key归一化助力长度外推

大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPEYaRNReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBIKERPLEXPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。

在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。

最初动机

之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}

点击阅读全文...

22 Oct

从梯度最大化看Attention的Scale操作

我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。

那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。

已有结果

《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}

点击阅读全文...