【备忘】维基百科与DNSCrypt
By 苏剑林 | 2015-05-30 | 45634位读者 | 引用中文维基百科的域名zh.wikipedia.org于5月19日被关键字屏蔽和DNS污染,目前从中国已无法访问中文维基百科,中文维基百科的域名也无法解析出正确的IP地址,而英文维基百科目前未受影响,可以正常访问。
Openwrt自动扫描WiFi并连接中继
By 苏剑林 | 2016-03-06 | 55682位读者 | 引用【中文分词系列】 3. 字标注法与HMM模型
By 苏剑林 | 2016-08-19 | 85968位读者 | 引用在这篇文章中,我们暂停查词典方法的介绍,转而介绍字标注的方法。前面已经提到过,字标注是通过给句子中每个字打上标签的思路来进行分词,比如之前提到过的,通过4标签来进行标注(single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾。均只取第一个字母。),这样,“为人民服务”就可以标注为“sbebe”了。4标注不是唯一的标注方式,类似地还有6标注,理论上来说,标注越多会越精细,理论上来说效果也越好,但标注太多也可能存在样本不足的问题,一般常用的就是4标注和6标注。
值得一提的是,这种通过给每个字打标签、进而将问题转化为序列到序列的学习,不仅仅是一种分词方法,还是一种解决大量自然语言问题的思路,比如命名实体识别等任务,同样可以用标注的方法来做。回到分词来,通过字标注法来进行分词的模型有隐马尔科夫模型(HMM)、最大熵模型(ME)、条件随机场模型(CRF),它们在精度上都是递增的,据说目前公开评测中分词效果最好的是4标注的CRF。然而,在本文中,我们要讲解的是最不精确的HMM。因为在我看来,它并非一个特定的模型,而是解决一大类问题的通用思想,一种简化问题的学问。
这一切,还得从概率模型谈起。
基于双向LSTM和迁移学习的seq2seq核心实体识别
By 苏剑林 | 2016-09-06 | 164129位读者 | 引用暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。
比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:
1、将句子分词,然后用Word2Vec训练词向量;
2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;
3、损失函数就是输出向量跟训练样本的核心词向量的cos值。
【不可思议的Word2Vec】5. Tensorflow版的Word2Vec
By 苏剑林 | 2017-05-27 | 111368位读者 | 引用本文封装了一个比较完整的Word2Vec,其模型部分使用tensorflow实现。本文的目的并非只是再造一次Word2Vec这个轮子,而是通过这个例子来熟悉tensorflow的写法,并且测试笔者设计的一种新的softmax loss的效果,为后面研究语言模型的工作做准备。
不同的地方
Word2Vec的基本的数学原理,请移步到《【不可思议的Word2Vec】 1.数学原理》一文查看。本文的主要模型还是CBOW或者Skip-Gram,但在loss设计上有所不同。本文还是使用了完整的softmax结构,而不是huffmax softmax或者负采样方案,但是在训练softmax时,使用了基于随机负采样的交叉熵作为loss。这种loss与已有的nce_loss和sampled_softmax_loss都不一样,这里姑且命名为random softmax loss。
另外,在softmax结构中,一般是$\text{softmax}(Wx+b)$这样的形式,考虑到$W$矩阵的形状事实上跟词向量矩阵的形状是一样的,因此本文考虑了softmax层与词向量层共享权重的模型(这时候直接让$b$为0),这种模型等效于原有的Word2Vec的负采样方案,也类似于glove词向量的词共现矩阵分解,但由于使用了交叉熵损失,理论上收敛更快,而且训练结果依然具有softmax的预测概率意义(相比之下,已有的Word2Vec负样本模型训练完之后,最后模型的输出值是没有意义的,只有词向量是有意义的。)。同时,由于共享了参数,因此词向量的更新更为充分,读者不妨多多测试这种方案。
基于GRU和AM-Softmax的句子相似度模型
By 苏剑林 | 2018-07-29 | 336845位读者 | 引用搞计算机视觉的朋友会知道,AM-Softmax是人脸识别中的成果。所以这篇文章就是借鉴人脸识别的做法来做句子相似度模型,顺便介绍在Keras下各种margin loss的写法。
背景
细想之下会发现,句子相似度与人脸识别有很多的相似之处~
已有的做法
在我搜索到的资料中,深度学习做句子相似度模型,就只有两种做法:一是输入一对句子,然后输出一个0/1标签代表相似程度,也就是视为一个二分类问题,比如《Learning Text Similarity with Siamese Recurrent Networks》中的模型是这样的
包括今年拍拍贷的“魔镜杯”,也是这种格式。另外一种做法是输入一个三元组“(句子A,跟A相似的句子,跟A不相似的句子)”,然后用triplet loss的做法解决,比如文章《Applying Deep Learning To Answer Selection: A Study And An Open Task》中的做法。
这两种做法其实也可以看成是一种,本质上是一样的,只不过loss和训练方法有所差别。但是,这两种方法却都有一个很严重的问题:负样本采样严重不足,导致效果提升非常慢。
科学空间浏览指南(FAQ)
By 苏剑林 | 2019-03-26 | 132559位读者 | 引用事实上,除了写博客内容,在这几年里,笔者是花了相当一部分时间来做科学空间的“表面功夫”,为此还专门学了一点php、css和js。虽然不敢说精益求精,但总体来说网站的浏览体验应该比前几年要好得多。
考虑到有些读者可能需要的功能,但一时半会未必能留意到,遂来整理一些站内技巧。
文章篇
什么环境阅读文章最佳?
两年前科学空间就已经加入了响应式设计,自动适应不同分辨率的屏幕。因此,不管哪个分辨率的环境应该都能看清文字内容,唯一的问题是,在小屏幕手机下公式可能会显示不全或者错位。为了较好地阅读公式,最好在7寸以上的屏幕上阅读。如果一定要用小屏幕的手机,可以考虑横屏阅读。
分享:用LaTeX+MathJax画一个三维三阶环方
By 苏剑林 | 2019-03-28 | 19091位读者 | 引用昨天看到数学研发论坛在讨论三维三阶幻方,论坛里的各大牛都已经讨论得差不多了,我也没什么好插话的。然后突发奇想,能不能用纯LaTeX画出一个这样的立体幻方出来?
昨天下午折腾了好一会儿,最后只抛出了个半成品,然后经过论坛的mathe大佬继续完善后,终于成功地画出来了:
$$\begin{array}{ccccccccccc}
& & & & 4 & —& —& — & — & 25 & —& —& — & — & 11
\\
& & & \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & && &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} && &&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &|
\\
& & 14 & — & — & —& — & 22 & — & — & — & —& 7 & & |
\\
& \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}&&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & | & & | \\
24 & — & —& —& — & 1 & —& —& — & — & 18 & & | & & |\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & &\color{red}{13} &| & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &\color{red}{27} & | & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&5\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & | & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &| & & |&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &|\\
|& & \color{red}{8} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \color{red}{12} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&22&&|\\
|&\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & | &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& | &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & | &&|\\
15 & — & —& —& — & 3 & — & — & —& —& 21 & & | & &|\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \color{red}{9} &| &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \color{red}{26} &|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&6\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}&\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} & &| & &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &&|&&|&\style{display: inline-block; transform: rotate(45deg)}{|}\\
|& &\color{red}{16} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& \color{red}{8} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&17\\
|& \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}}& & & &|& \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &&&& | & \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|}\\
23 & — & — & — & — & 2 & — & — & — & — & 19\\
\end{array}$$
事实上代码里边还内嵌了一些HTML代码,所以不算是严格的纯LaTeX代码,应该说是LaTeX+MathJax的结合。
最近评论