生成扩散模型漫谈(十九):作为扩散ODE的GAN
By 苏剑林 | 2023-06-24 | 30823位读者 | 引用在文章《生成扩散模型漫谈(十六):W距离 ≤ 得分匹配》中,我们推导了Wasserstein距离与扩散模型得分匹配损失之间的一个不等式,表明扩散模型的优化目标与WGAN的优化目标在某种程度上具有相似性。而在本文,我们将探讨《MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows》中的研究成果,它进一步展示了GAN与扩散模型之间的联系:GAN实际上可以被视为在另一个时间维度上的扩散ODE!
这些发现表明,尽管GAN和扩散模型表面上是两种截然不同的生成式模型,但它们实际上存在许多相似之处,并在许多方面可以相互借鉴和参考。
思路简介
我们知道,GAN所训练的生成器是从噪声$\boldsymbol{z}$到真实样本的一个直接的确定性变换$\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})$,而扩散模型的显著特点是“渐进式生成”,它的生成过程对应于从一系列渐变的分布$p_0(\boldsymbol{x}_0),p_1(\boldsymbol{x}_1),\cdots,p_T(\boldsymbol{x}_T)$中采样(注:在前面十几篇文章中,$\boldsymbol{x}_T$是噪声,$\boldsymbol{x}_0$是目标样本,采样过程是$\boldsymbol{x}_T\to \boldsymbol{x}_0$,但为了便于下面的表述,这里反过来改为$\boldsymbol{x}_0\to \boldsymbol{x}_T$)。看上去确实找不到多少相同之处,那怎么才能将两者联系起来呢?
基于量子化假设推导模型的尺度定律(Scaling Law)
By 苏剑林 | 2023-05-18 | 34484位读者 | 引用尺度定律(Scaling Law),指的是模型能力与模型尺度之间的渐近关系。具体来说,模型能力我们可以简单理解为模型的损失函数,模型尺度可以指模型参数量、训练数据量、训练步数等,所谓尺度定律,就是研究损失函数跟参数量、数据量、训练步数等变量的大致关系。《Scaling Laws for Neural Language Models》、《Training Compute-Optimal Large Language Models》等工作的实验结果表明,神经网络的尺度定律多数呈现“幂律(Power law)”的形式。
为什么会是幂律呢?能否从理论上解释呢?论文《The Quantization Model of Neural Scaling》基于“量子化”假设给出了一个颇为有趣的推导。本文一同来欣赏一下。
生成扩散模型漫谈(二十):从ReFlow到WGAN-GP
By 苏剑林 | 2023-06-28 | 23432位读者 | 引用上一篇文章《生成扩散模型漫谈(十九):作为扩散ODE的GAN》中,我们介绍了如何将GAN理解为在另一个时间维度上的扩散ODE,简而言之,GAN实际上就是将扩散模型中样本的运动转化为生成器参数的运动!然而,该文章的推导过程依赖于Wasserstein梯度流等相对复杂和独立的内容,没法很好地跟扩散系列前面的文章连接起来,技术上显得有些“断层”。
在笔者看来,《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》所介绍的ReFlow是理解扩散ODE的最直观方案,既然可以从扩散ODE的角度理解GAN,那么必定存在一个从ReFlow理解GAN的角度。经过一番尝试,笔者成功从ReFlow推出了类似WGAN-GP的结果。
理论回顾
之所以说“ReFlow是理解扩散ODE的最直观方案”,是因为它本身非常灵活,以及非常贴近实验代码——它能够通过ODE建立任意噪声分布到目标数据分布的映射,而且训练目标非常直观,不需要什么“弯弯绕绕”就可以直接跟实验代码对应起来。
语言模型输出端共享Embedding的重新探索
By 苏剑林 | 2023-07-20 | 29483位读者 | 引用预训练刚兴起时,在语言模型的输出端重用Embedding权重是很常见的操作,比如BERT、第一版的T5、早期的GPT,都使用了这个操作,这是因为当模型主干部分不大且词表很大时,Embedding层的参数量很可观,如果输出端再新增一个独立的同样大小的权重矩阵的话,会导致显存消耗的激增。不过随着模型参数规模的增大,Embedding层的占比相对变小了,加之《Rethinking embedding coupling in pre-trained language models》等研究表明共享Embedding可能会有些负面影响,所以现在共享Embedding的做法已经越来越少了。
本文旨在分析在共享Embedding权重时可能遇到的问题,并探索如何更有效地进行初始化和参数化。尽管共享Embedding看起来已经“过时”,但这依然不失为一道有趣的研究题目。
Lion/Tiger优化器训练下的Embedding异常和对策
By 苏剑林 | 2023-08-28 | 28717位读者 | 引用打从在《Tiger:一个“抠”到极致的优化器》提出了Tiger优化器之后,Tiger就一直成为了我训练模型的“标配”优化器。最近笔者已经尝试将Tiger用到了70亿参数模型的预训练之中,前期效果看上来尚可,初步说明Tiger也是能Scale Up的。不过,在查看训练好的模型权重时,笔者发现Embedding出现了一些异常值,有些Embedding的分量达到了$\pm 100$的级别。
经过分析,笔者发现类似现象并不会在Adam中出现,这是Tiger或者Lion这种带符号函数$\text{sign}$的优化器特有的问题,对此文末提供了两种参考解决方案。本文将记录笔者的分析过程,供大家参考。
现象
接下来,我们的分析都以Tiger优化器为例,但分析过程和结论同样适用于Lion。
随机分词浅探:从Viterbi Decoding到Viterbi Sampling
By 苏剑林 | 2023-09-16 | 21170位读者 | 引用上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。
那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33424位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
让炼丹更科学一些(一):SGD的平均损失收敛
By 苏剑林 | 2023-12-19 | 35782位读者 | 引用很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。
在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。
问题设置
设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}
最近评论