14 Dec

基于Conditional Layer Normalization的条件文本生成

从文章《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》中我们可以知道,只要配合适当的Attention Mask,Bert(或者其他Transformer模型)就可以用来做无条件生成(Language Model)和序列翻译(Seq2Seq)任务。

可如果是有条件生成呢?比如控制文本的类别,按类别随机生成文本,也就是Conditional Language Model;又比如传入一副图像,来生成一段相关的文本描述,也就是Image Caption。

相关工作

八月份的论文《Encoder-Agnostic Adaptation for Conditional Language Generation》比较系统地分析了利用预训练模型做条件生成的几种方案;九月份有一篇论文《CTRL: A Conditional Transformer Language Model for Controllable Generation》提供了一个基于条件生成来预训练的模型,不过这本质还是跟GPT一样的语言模型,只能以文字输入为条件;而最近的论文《Plug and Play Language Models: a Simple Approach to Controlled Text Generation》将$p(x|y)$转化为$p(x)p(y|x)$来探究基于预训练模型的条件生成。

条件Normalization示意图

条件Normalization示意图

不过这些经典工作都不是本文要介绍的。本文关注的是以一个固定长度的向量作为条件的文本生成的场景,而方法是Conditional Layer Normalization——把条件融合到Layer Normalization的$\beta$和$\gamma$中去。

点击阅读全文...

28 May

ON-LSTM:用有序神经元表达层次结构

今天介绍一个有意思的LSTM变种:ON-LSTM,其中“ON”的全称是“Ordered Neurons”,即有序神经元,换句话说这种LSTM内部的神经元是经过特定排序的,从而能够表达更丰富的信息。ON-LSTM来自文章《Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks》,顾名思义,将神经元经过特定排序是为了将层级结构(树结构)整合到LSTM中去,从而允许LSTM能自动学习到层级结构信息。这篇论文还有另一个身份:ICLR 2019的两篇最佳论文之一,这表明在神经网络中融合层级结构(而不是纯粹简单地全向链接)是很多学者共同感兴趣的课题。

ON-LSTM运算流程示意图。主要是将分段函数用cumax光滑化变成可导。

ON-LSTM运算流程示意图。主要是将分段函数用cumax光滑化变成可导。

笔者留意到ON-LSTM是因为机器之心的介绍,里边提到它除了提高了语言模型的效果之外,甚至还可以无监督地学习到句子的句法结构!正是这一点特性深深吸引了我,而它最近获得ICLR 2019最佳论文的认可,更是坚定了我要弄懂它的决心。认真研读、推导了差不多一星期之后,终于有点眉目了,遂写下此文。

在正式介绍ON-LSTM之后,我忍不住要先吐槽一下这篇文章实在是写得太差了,将一个明明很生动形象的设计,讲得异常晦涩难懂,其中的核心是$\tilde{f}_t$和$\tilde{i}_t$的定义,文中几乎没有任何铺垫就贴了出来,也没有多少诠释,开始的读了好几次仍然像天书一样...总之,文章写法实在不敢恭维~

点击阅读全文...

3 Jun

基于DGCNN和概率图的轻量级信息抽取模型

背景:前几个月,百度举办了“2019语言与智能技术竞赛”,其中有三个赛道,而我对其中的“信息抽取”赛道颇感兴趣,于是报名参加。经过两个多月的煎熬,比赛终于结束,并且最终结果已经公布。笔者从最初的对信息抽取的一无所知,经过这次比赛的学习和研究,最终探索出在监督学习下做信息抽取的一些经验,遂在此与大家分享。

信息抽取赛道:“科学空间队”在最终的测试结果上排名第七

信息抽取赛道:“科学空间队”在最终的测试结果上排名第七

笔者在最终的测试集上排名第七,指标F1为0.8807(Precision是0.8939,Recall是0.8679),跟第一名相差0.01左右。从比赛角度这个成绩不算突出,但自认为模型有若干创新之处,比如自行设计的抽取结构、CNN+Attention(所以足够快速)、没有用Bert等预训练模型,私以为这对于信息抽取的学术研究和工程应用都有一定的参考价值。

基本分析

信息抽取(Information Extraction, IE)是从自然语言文本中抽取实体、属性、关系及事件等事实类信息的文本处理技术,是信息检索、智能问答、智能对话等人工智能应用的重要基础,一直受到业界的广泛关注。... 本次竞赛将提供业界规模最大的基于schema的中文信息抽取数据集(Schema based Knowledge Extraction, SKE),旨在为研究者提供学术交流平台,进一步提升中文信息抽取技术的研究水平,推动相关人工智能应用的发展。

------ 比赛官方网站介绍

点击阅读全文...

26 Dec

“非自回归”也不差:基于MLM的阅读理解问答

前段时间写了《万能的seq2seq:基于seq2seq的阅读理解问答》,探索了以最通用的seq2seq的方式来做阅读理解式问答,并且取得相当不错的成绩(单模型0.77,超过参加比赛时精调的最佳模型)。这篇文章我们继续做这个任务,不过换一个思路,直接基于MLM模型来做,最终成绩基本一致,但能提高预测速度。

用MLM做阅读理解的模型图示(其中[M]表示[MASK]标记)

用MLM做阅读理解的模型图示(其中[M]表示[MASK]标记)

点击阅读全文...

11 Apr

一月份的时候,笔者写了《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》,指出无监督语义相似度的SOTA模型BERT-flow其实可以通过一个简单的线性变换(白化操作,BERT-whitening)达到。随后,我们进一步完善了实验结果,写成了论文《Whitening Sentence Representations for Better Semantics and Faster Retrieval》。这篇博客将对这篇论文的内容做一个基本的梳理,并在5个中文语义相似度任务上进行了补充评测,包含了600多个实验结果。

方法概要

BERT-whitening的思路很简单,就是在得到每个句子的句向量$\{x_i\}_{i=1}^N$后,对这些矩阵进行一个白化(也就是PCA),使得每个维度的均值为0、协方差矩阵为单位阵,然后保留$k$个主成分,流程如下图:

BERT-whitening的基本流程

BERT-whitening的基本流程

点击阅读全文...

3 Oct

不在家的国庆

在生活上,我是一个比较传统的人,因此每到节日我都会尽量回家跟家人团聚。也许会让大家比较吃惊的是,今年的国庆是我第一个不在家的国庆。的确,从小学到高中,上学的地方离家都比较近,每周回去一次都是不成问题的。现在来到了广州,就不能太随心了。虽然跟很多同学相比,我离家还是比较近的,但是来回也要考虑车费、时间等等。国庆假期时间虽然很长,但是中秋已经回去一趟了,所以我决定国庆就不再回去了。

对我来说,中秋跟国庆相比,中秋的意义更大些。所以我选择了国庆不回家。对家人而言,看到自己平安就好,因此哪一天回去他们都会很高兴,当然,对于农村人来说,中秋的味道更浓,更希望团聚。

点击阅读全文...

5 Oct

2010诺奖再次光临英国——物理学奖

安德烈-盖姆

安德烈-盖姆

康斯坦丁-诺沃肖洛夫

康斯坦丁-诺沃肖洛夫

新浪科技讯 据外国媒体报道,两位在俄罗斯出生的科学家安德烈-盖姆和康斯坦丁-诺沃肖洛夫10月5日因为对石墨烯的“突破性实验”而获得2010年宝贝尔物理学奖,这种材料预计将在电子学发挥重要作用。

点击阅读全文...

26 Dec

参加天文竞赛的照片...

没有什么好的相机,只是一台傻瓜机,照片效果不是很好,图片经过PS。
特以此留念.....
我的QQ空间里有更清晰的照片,欢迎访问!(673035421)

这就是我

这就是我

点击阅读全文...