BytePiece:更纯粹、更高压缩率的Tokenizer
By 苏剑林 | 2023-09-07 | 52246位读者 | 引用目前在LLM中最流行的Tokenizer(分词器)应该是Google的SentencePiece了,因为它符合Tokenizer的一些理想特性,比如语言无关、数据驱动等,并且由于它是C++写的,所以Tokenize(分词)的速度很快,非常适合追求效率的场景。然而,它也有一些明显的缺点,比如训练速度慢(BPE算法)、占用内存大等,同时也正因为它是C++写的,对于多数用户来说它就是黑箱,也不方便研究和二次开发。
事实上,Tokenizer的训练就相当于以往的“新词发现”,而笔者之前也写过中文分词和最小熵系列文章,对新词发现也有一定的积累,所以很早之前就有自己写一版Tokenizer的想法。这几天总算腾出了时间初步完成了这件事情,东施效颦SentencePiece,命名为“BytePiece”。
随机分词浅探:从Viterbi Decoding到Viterbi Sampling
By 苏剑林 | 2023-09-16 | 21083位读者 | 引用上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。
那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。
从梯度最大化看Attention的Scale操作
By 苏剑林 | 2023-10-22 | 67176位读者 | 引用我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。
那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。
已有结果
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33360位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
生成扩散模型漫谈(二十一):中值定理加速ODE采样
By 苏剑林 | 2023-12-07 | 70102位读者 | 引用在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。
本文我们聚焦于ODE。在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。
欧拉方法
正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}
写了个刷论文的辅助网站:Cool Papers
By 苏剑林 | 2023-12-25 | 89227位读者 | 引用写在开头
一直以来,笔者都有日刷Arxiv的习惯,以求尽可能跟上领域内最新成果,并告诫自己“不进则退”。之前也有不少读者问我是怎么刷Arxiv的、有什么辅助工具等,但事实上,在很长的时间里,笔者都是直接刷Arxiv官网,并且没有用任何算法过滤,都是自己一篇篇过的。这个过程很枯燥,但并非不能接受,之所以不用算法初筛,主要还是担心算法漏召,毕竟“刷”就是为了追新,一旦算法漏召就“错失先机”了。
自从Kimi Chat发布后,笔者就一直计划着写一个辅助网站结合Kimi来加速刷论文的过程。最近几个星期稍微闲了一点,于是在GPT4、Kimi的帮助下,初步写成了这个网站,并且经过几天的测试和优化后,已经逐步趋于稳定,于是正式邀请读者试用。
Cool Papers:https://papers.cool
新年快乐!记录一下 Cool Papers 的开发体验
By 苏剑林 | 2024-01-01 | 54847位读者 | 引用上周在《写了个刷论文的辅助网站:Cool Papers》中,笔者分享了一个自己开发的刷论文网站Cool Papers,并得到了一些用户的认可。然而,“使用的人越多,暴露的问题就越多”,当用户量上来后,才感觉到之前写的代码是多么不严谨,于是过去一整周都在不停地修Bug之中,直到今天下午还发现了一个Bug在修。这篇文章简单总结一下笔者在开发和修Bug过程中的感想。
Cool Papers:https://papers.cool
技术
事实上,“papers.cool”这个域名已经注册了四年多,从这可以看出笔者其实很早以前就计划着做类似Cool Papers的网站,也做过一些雏形,但之所以这个网站在四年后才正式诞生,根本原因就只有一个:技术不行。
让炼丹更科学一些(一):SGD的平均损失收敛
By 苏剑林 | 2023-12-19 | 35596位读者 | 引用很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。
在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。
问题设置
设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}
最近评论