14 Sep

《量子力学与路径积分》习题解答V0.1

忘了告诉大家,笔者是师范生,目前大四了,按照计划,我已经在一所高中实习了,因此,这两个月更新可能不怎么多,回复也不及时,请大家见谅。

趁这两个月时间,每天做一点《量子力学与路径积分》中的习题,整理与大家分享。目前是V0.1版,暂时只有第二三章的大部分习题解答。

《量子力学与路径积分》习题解答

《量子力学与路径积分》习题解答

点击阅读全文...

5 Oct

2015诺贝尔医学奖:中国人在内

很久没有写过关于诺贝尔奖的消息了,最初几年都会非常关注,一有更新就转载到博客上面,而最近几年都仅仅是关注一下名单,并没有在博客上更新。这一次突然更新,是因为看到首次在诺贝尔医学奖上有了中国人的名字——屠呦呦,就来简单写写,算是与民同乐吧。

2015年诺贝尔医学奖

2015年诺贝尔医学奖

诺贝尔奖官方网址:http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/tu-facts.html

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

25 Dec

从loss的硬截断、软化到focal loss

前言

今天在QQ群里的讨论中看到了focal loss,经搜索它是Kaiming大神团队在他们的论文《Focal Loss for Dense Object Detection》提出来的损失函数,利用它改善了图像物体检测的效果。不过我很少做图像任务,不怎么关心图像方面的应用。本质上讲,focal loss就是一个解决分类问题中类别不平衡、分类难度差异的一个loss,总之这个工作一片好评就是了。大家还可以看知乎的讨论:
《如何评价kaiming的Focal Loss for Dense Object Detection?》

看到这个loss,开始感觉很神奇,感觉大有用途。因为在NLP中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。我尝试把它用在我的基于序列标注的问答模型中,也有微小提升。嗯,这的确是一个好loss。

接着我再仔细对比了一下,我发现这个loss跟我昨晚构思的一个loss具有异曲同工之理!这就促使我写这篇博文了。我将从我自己的思考角度出发,来分析这个问题,最后得到focal loss,也给出我昨晚得到的类似的loss。

点击阅读全文...

28 Oct

朋友们,来瓶汽水吧!有趣的换汽水问题

————怀念我曾经参加过的小学数学竞赛。

从一道小学竞赛题谈起

笔者小学五年级时参加了第一次数学竞赛,叫“育苗杯”,大多数题目都记不清楚了,唯一记得很清楚的是如下这道题目(不完全相同,意思类似):

假设汽水一块钱一瓶,而且4个空瓶子可以换一瓶汽水喝。如果我有30块钱,我最多可以喝到多少瓶汽水?

来瓶汽水吧

来瓶汽水吧

当然,上面的情况可能太理想了,但是必须承认,类似的案例在生活中大量存在。比如买草龟吃时,草龟壳由于可以入药,所以有人回收龟壳,这也意味着若干个龟壳就可以换一只龟,等等。读者能不能很快就算出来呢?

当然,这道题并不困难,30块钱能买30瓶汽水,然后留下30个空瓶子,这30个空瓶子可以换来7瓶汽水,剩下2个空瓶子;喝完汽水后,剩下9个空瓶子,可以换来2瓶汽水,剩下1个空瓶子;喝完汽水后,剩下3个空瓶子。算算看,这时候我们已经喝了30+7+2=39瓶汽水了。(不考虑撑着啊,也可以分给别人喝^_^)整个过程如下表:
$$\begin{array}{c|cccc}
\hline
\text{空瓶子数} & 30 & 2+7 & 1+2 & ? \\
\hline
\text{已喝汽水数} & 30 & 7 & 2 & ? \\
\hline \end{array}$$

点击阅读全文...

18 Nov

《量子力学与路径积分》习题解答V0.3

新的《量子力学与路径积分》习题解答又放出来啦。与前两个版本不同的是,前两次更新,每次基本上完成了两章的习题,而这一次,只是增加了第6章的22道习题(第6章共有29道)。原因很多,各种忙就不说啦,主要是第6章开始,各种题目开始复杂起来,计算量也增大,虽然笔者是数学系的,可是还是前进得艰难。还有,第4、5两章加起来也只是25道习题,第6章却有29题,因此,本次更新的工作量,远远大于前两次更新的工作量。

为什么只有22题?当然是没有做完啦。为什么没有做完就更新啦?因为笔者觉得右面的题目,跟第7章的联系更为密切,因此,怕读者等不及,所以剩下的题目,跟第7章一起再发吧。

此外,我是看着中文版来做题的,中文版的翻译质量还不错,但是细微之处却有些不妥当,所以笔者要来回参考中英文版,颇累。读者可以发现,这一版中,“勘误”增加了不少。

点击阅读全文...

1 Dec

熵的概念

作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。

熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。

点击阅读全文...

11 Dec

上集回顾

在第一篇中,笔者介绍了“熵”这个概念,以及它的一些来龙去脉。熵的公式为
$$S=-\sum_x p(x)\log p(x)\tag{1}$$

$$S=-\int p(x)\log p(x) dx\tag{2}$$
并且在第一篇中,我们知道熵既代表了不确定性,又代表了信息量,事实上它们是同一个概念。

说完了熵这个概念,接下来要说的是“最大熵原理”。最大熵原理告诉我们,当我们想要得到一个随机事件的概率分布时,如果没有足够的信息能够完全确定这个概率分布(可能是不能确定什么分布,也可能是知道分布的类型,但是还有若干个参数没确定),那么最为“保险”的方案是选择使得熵最大的分布。

最大熵原理

承认我们的无知

很多文章在介绍最大熵原理的时候,会引用一句著名的句子——“不要把鸡蛋放在同一个篮子里”——来通俗地解释这个原理。然而,笔者窃以为这句话并没有抓住要点,并不能很好地体现最大熵原理的要义。笔者认为,对最大熵原理更恰当的解释是:承认我们的无知!

点击阅读全文...