今天是2014年2月14日,农历正月十五,传统的元宵佳节,祝大家元宵节快乐!
不过虽说是元宵佳节,但是我们这里的习俗却没有闹元宵的,好像在我们这里元宵节就像普通的初一十五一样,惯例地上个香,祭下神而已,唯一特别的地方就是早上妈妈放了个鞭炮,什么汤圆、灯笼、灯谜都没有呢。不过这并不妨碍我欣赏元宵节,印象里好像上学以来这是第一次在家过元宵节。幸好没有参加美国数学建模,不然又少了半个月的假期,少了一次难得的元宵,而多了得不偿失的劳动...
今天也是西方的情人节,但在这里我只强调元宵节。首要原因却不是我目前单身(当然这也是原因之一^_^),而是元宵节是中国传统节日。我这个人有个奇怪的“嗜好”,反正越潮流的东西我越不跟。于是乎,既然那么多人都庆祝着西方节日(什么万圣节、圣诞节、情人节),那么我就偏不凑这个热闹。我又想起了去年圣诞前夕有个师弟过来向我们宣传和推销圣诞的东西,被我批了一顿,我直言说“你为什么不等元旦再来?”。我想,如果哪一天,我也有机会庆祝情人节,我也只是庆祝中国的情人节,总感觉中国的情人节美多了:七夕,Qixi Festival,多美!不论是典故还是习俗都更美~
视频演示:费曼的茶杯
By 苏剑林 | 2014-02-07 | 18794位读者 | 引用Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 28338位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
在学车的时候,我堂大哥曾问我一道作圆的问题:
平面上给出三个两两相切的圆以及它们的圆心,求作一个圆与这三个圆都相切(尺规作图)。
如果从纯几何的途径入手,我们甚至很难判断这样的圆是否存在。但是我之前似乎已经看过类似的题目,于是很快想到一个名词:反演。反演可以将圆反演成直线(圆过反演点),也可以将圆反演成圆(圆不过反演点),而其他的相切、相交等关系保持不变。对反演后的图形进行相同的反演,就变回原来的图形。本题的难点在于圆太多,利用反演,我们可以将它变为两条直线和一个圆的问题。
假设读者已经有了反演的基本知识,如果没有,请到
http://zh.wikipedia.org/wiki/反演
阅读相关内容。
在讨论了倒立单摆的相关分析之后,胡雄大哥(笔者的一位好友)提出了一个问题:一根均匀杆,当然质量不可忽略,只有一个力(简单起见,可以先假设为恒力)作用在其中一个点上(简单起见,可以假设为端点),那么杆是怎么运动的?
其实笔者学了不少的经典力学,也分析了不少问题,但就是对于力矩、角动量等还是模模糊糊的,对于我来说,大多数经典力学问题就是“作用量+变分”,本题也不例外。为了让题目的实验意义更加明确,不妨将题目改成:
一根中性的均匀杆,它的一个端点带有一个点电荷,那么它(仅仅)在一个均匀电场中的运动是怎样的?
在这里,我们进一步简化,只考虑平面问题。杆属于刚体,为了描述杆的运动,我们需要描述杆上一点的运动,以及杆绕这一点的转动,也就是说,即使只考虑平面的情况,该系统也是有三个自由度的。设杆的带电荷那一端点的坐标为$(x,y)$,为了描述杆的转动,以这一端点为中心建立极坐标系,设杆的极角为$\theta$。设电势的函数为$U(x,y)$,因为只有一点带电(受力),因此势能是简单的。
线性微分方程组:已知特解求通解
By 苏剑林 | 2014-06-18 | 37397位读者 | 引用含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。
这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~
炼钢.vs.做菜:淬火与过冷河
By 苏剑林 | 2014-02-22 | 39265位读者 | 引用除了数学物理和中国象棋,我闲时也喜欢弄一下吃的。看到各种菜料经过自己的加工变成佳肴,也是一件美不胜收的事情;有时看到同样的菜料能够做出不同款式、不同味道的菜时,更是其乐无穷。作为广东人,我很自豪于其中一句话:“广东人吃所有东西——天上飞的,除了飞机;地上爬的,除了火车;水中游的,除了潜艇”。虽然不免有些夸张,但这句话充分显示了广东人(或者说岭南地区)饮食和烹饪的强大本领。我的厨房技术来源于我妈妈,小时候妈妈在家里做菜,由于是烧柴草生火,所以我得在灶前看好火。于是看火之时也在看妈妈做菜,久而久之,也会学会了一些做菜的方法。而现在,妈妈仍是家里的厨房好手,而我也不时进入厨房,做做自己喜欢吃的东西。谢谢我的好妈妈!
炼钢
本文叫“炼钢.vs.做菜”,这两者基本上是风牛马不相及,不过我却发现它们有一点点相似的技巧。已不记得什么时候了,在一本自然科学的书上,我曾看到过炼钢的两种技术:淬火和退火(后来发现还有正火、回火等,原理类似)。简单来说,淬火是将一块钢铁烧红,然后放进冷水中迅速冷却(也就是加热到一定温度,然后迅速冷却),如此重复,便可使得钢铁变硬,但同时也会更脆;退火则刚刚相反,它是将钢铁烧红后,让它自然冷却(有必要时,想办法降低冷却速度),如此一来,钢铁变软了,也变韧了。正火、回火均与退火类似,只是在细节上不同。通过淬火和退火的适当组合,可以生产出硬度和韧度都适当的钢铁。
翻到新的维度,把积分解决!
By 苏剑林 | 2014-02-25 | 37134位读者 | 引用一般来说,如果原函数容易找到的话,牛顿-莱布尼兹公式是定积分的通用方法。但是牛顿-莱布尼兹公式只适合连续函数的积分,如果积分区间含有奇点,那就不成立了。比如,我们考虑积分
$$\int_{-1}^1 \frac{1}{x^2}dx$$
当然,从严格的数学上来说,这种写法是不成立的,因为被积函数在原点没有意义。当然,从物理的角度来考虑,由于对称性,我们确信
$$\int_{-1}^1 \frac{1}{x^2}dx=2\int_{0}^1 \frac{1}{x^2}dx=\lim_{\varepsilon\to 0}2\int_{\varepsilon}^1 \frac{1}{x^2}dx$$
从而得出积分发散的结论。这种处理某种程度上是可以接受的,但是却不是让人满意的,因为它导致了分段。有什么办法可以直接处理这种情况呢?确实有的,同样引入参数,并且最终让参数为0,考虑带参数的积分
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx$$
只要参数为正,这个被积函数就在$\mathbb{R}$上处处连续了,也就是奇点消失了,这样子就可以用牛顿-莱布尼兹公式了
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx=\left.\frac{1}{\varepsilon}\arctan\left(\frac{x}{\varepsilon}\right)\right|_{-1}^{1}$$
考虑$\varepsilon\to 0$的情况,就自动得到了积分发散的结论。
最近评论