《量子力学与路径积分》习题解答V0.4
By 苏剑林 | 2016-01-09 | 32634位读者 | 引用《量子力学与路径积分》的习题解答终于艰难地推进到了0.4版本,目前已经基本完成了前7章的习题。
今天已经是2016年1月9号了,2015年已经远去,都忘记跟大家说一声新年快乐了,实在抱歉。在这里补充一句:祝大家新年快乐,事事如意!。
笔者已经大四了,现在是临近期末考,又临近毕业。最近忙的事情有很多,其中之一是我加入了一个互联网小公司的创业队伍中,负责文本挖掘,偶尔也写写爬虫,等等,感觉自己进去之后,增长了不少见识,也增加了不少技术知识,较之我上一次实习,又有不一样的高度。现在里边有好几样事情排队着做,可谓忙得不亦悦乎了。还有,我也开始写毕业论文了,早点写完能够多点时间,学学自己喜欢的东西,毕业论文我写的是路径积分相关的内容,自我感觉写得还是比较清楚易懂的,等时机成熟了,发出来,向大家普及路径积分^_^。此外,每天做点路径积分的习题,也要消耗不少时间,有些比较难的题目,基本一道就做几个早上才能写出比较满意的答案。总感觉想学的想做的事情有很多,可是时间很少。
年三十折腾极路由之SSH反向代理
By 苏剑林 | 2016-02-07 | 61661位读者 | 引用今天是年三十了,这里简单祝大家除夕快乐,新年快乐!愿大家在新的一年里都晋升为学神。^_^
这两天主要在折腾家里的路由器。平时家里只有爸妈两人,所以为了节省,家里只是通过中继隔壁家的网络来上网。本来家里用小米路由器mini,可是小米mini中继模式下功能限制非常多,我又不想刷第三方固件(因为这样会失去app控制功能,不是很方便),所以干脆换了个极路由3。极路由在中继模式下仍然保留了大部分功能(我觉得这样才是正常的,我不理解小米mini在中继之后就没了那么多功能究竟是什么逻辑)。
作为折腾派,一个新路由到手,总有很多东西要配置,极路由本身是基于openwrt的,因此可玩性也很强。首先要完成中继,然后上网,这个很简单就不多说了。其次是获得ssh权限,在极路由那里叫做“申请开发者模式”,或者叫root(感觉极路由想做路由界的苹果,但是在如今这个时代,苹果当初那种发展模式估计很难发展起来了),这个步骤也不难,不过申请之后就会失去极路由的保修资格(不理解这是什么逻辑)。
本文主要介绍了怎么在openwrt(极路由)上安装python,以及建立SSH反向代理(实现内网穿透)。
Coming Back...
By 苏剑林 | 2016-05-15 | 38884位读者 | 引用上一篇博文的发布时间是4月15日,到今天刚好一个月没更新了,但是科学空间的访问量还在。感谢大家对本空间的支持,BoJone对久未更新表示非常抱歉。在恢复更新之前,请允许笔者记记流水账。
在“消失”的一个月中,笔者主要的事情是毕业论文和数据挖掘竞赛。首先毕业论文方面,论文于4月22日交稿,4月29日答辩,答辩完后就意味着毕业论文的事情结束了。我的毕业论文主要写了路径积分在描述随机游走、偏微分方程、随机微分方程的应用。既然是本科论文,就不能说得太晦涩,因此论文整体来看还是比较易读的,可以作为路径积分的入门教程。后面我会略加修改,分开几部分发布在科学空间中的,到时请大家批评指正。
说到路径积分,不得不说到做《量子力学与路径积分》的习题解答这件事情了。很遗憾,这一个多月来,基本没有时间做习题。不过后面我会继续做下去的,已发布的版本,也请有兴趣的读者指出问题。记得年初的时候,朋友问我今年的愿望是什么,我随意地回答了“希望做完一本书的习题”,这本书,当然就是《量子力学与路径积分》了,我相信今年应该能够完成的。
【备忘】用树莓派3做无线路由器
By 苏剑林 | 2016-04-12 | 65889位读者 | 引用3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。
参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh
OCR技术浅探:1. 全文简述
By 苏剑林 | 2016-06-17 | 44769位读者 | 引用写在前面:前面的博文已经提过,在上个月我参加了第四届泰迪杯数据挖掘竞赛,做的是A题,跟OCR系统有些联系,还承诺过会把最终的结果开源。最近忙于毕业、搬东西,一直没空整理这些内容,现在抽空整理一下。
把结果发出来,并不是因为结果有多厉害、多先进(相反,当我对比了百度的这篇论文《基于深度学习的图像识别进展:百度的若干实践》之后,才发现论文的内容本质上还是传统那一套,远远还跟不上时代的潮流),而是因为虽然OCR技术可以说比较成熟了,但网络上根本就没有对OCR系统进行较为详细讲解的文章,而本文就权当补充这部分内容吧。我一直认为,技术应该要开源才能得到发展(当然,在中国这一点也确实值得商榷,因为开源很容易造成山寨),不管是数学物理研究还是数据挖掘,我大多数都会发表到博客中,与大家交流。
OCR技术浅探:2. 背景与假设
By 苏剑林 | 2016-06-17 | 39045位读者 | 引用研究背景
关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.
然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.
综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.
研究假设
在本文中,我们假设图像的文字部分有以下的特征:
OCR技术浅探:4. 文字定位
By 苏剑林 | 2016-06-24 | 41191位读者 | 引用经过第一部分,我们已经较好地提取了图像的文本特征,下面进行文字定位. 主要过程分两步:1、邻近搜索,目的是圈出单行文字;2、文本切割,目的是将单行文本切割为单字.
邻近搜索
我们可以对提取的特征图进行连通区域搜索,得到的每个连通区域视为一个汉字. 这对于大多数汉字来说是适用,但是对于一些比较简单的汉字却不适用,比如“小”、“旦”、“八”、“元”这些字,由于不具有连通性,所以就被分拆开了,如图13. 因此,我们需要通过邻近搜索算法,来整合可能成字的区域,得到单行的文本区域.
邻近搜索的目的是进行膨胀,以把可能成字的区域“粘合”起来. 如果不进行搜索就膨胀,那么膨胀是各个方向同时进行的,这样有可能把上下行都粘合起来了. 因此,我们只允许区域向单一的一个方向膨胀. 我们正是要通过搜索邻近区域来确定膨胀方向(上、下、左、右):
邻近搜索* 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向.
既然涉及到了邻近,那么就需要有距离的概念. 下面给出一个比较合理的距离的定义.
距离
如上图,通过左上角坐标$(x,y)$和右下角坐标$(z,w)$就可以确定一个矩形区域,这里的坐标是以左上角为原点来算的. 这个区域的中心是$\left(\frac{x+w}{2},\frac{y+z}{2}\right)$. 对于图中的两个区域$S$和$S'$,可以计算它们的中心向量差
$$(x_c,y_c)=\left(\frac{x'+w'}{2}-\frac{x+w}{2},\frac{y'+z'}{2}-\frac{y+z}{2}\right)\tag{10}$$
如果直接使用$\sqrt{x_c^2+y_c^2}$作为距离是不合理的,因为这里的邻近应该是按边界来算,而不是中心点. 因此,需要减去区域的长度:
$$(x'_c,y'_c)=\left(x_c-\frac{w-x}{2}-\frac{w'-x'}{2},y_c-\frac{z-y}{2}-\frac{z'-y'}{2}\right)\tag{11}$$
距离定义为
$$d(S,S')=\sqrt{[\max(x'_c,0)]^2+[\max(y'_c,0)]^2}\tag{12}$$
至于方向,由$(x_c,y_c)$的幅角进行判断即可.
然而,按照前面的“邻近搜索*”方法,容易把上下两行文字粘合起来,因此,基于我们的横向排版假设,更好的方法是只允许横向膨胀:
邻近搜索 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向,当且仅当所在方向是水平的,才执行膨胀操作.
结果
有了距离之后,我们就可以计算每两个连通区域之间的距离,然后找出最邻近的区域. 我们将每个区域向它最邻近的区域所在的方向扩大4分之一,这样邻近的区域就有可能融合为一个新的区域,从而把碎片整合.
实验表明,邻近搜索的思路能够有效地整合文字碎片,结果如图15.
最近评论