20 Sep

自然数集中 N = ab + c 时 a + b + c 的最小值

前天晚上微信群里有群友提出了一个问题:

对于一个任意整数$N > 100$,求一个近似算法,使得$N=a\times b+c$(其中$a,b,c$都是非负整数),并且令$a+b+c$尽量地小。

初看这道题,笔者第一感觉就是“这还需要算法?”,因为看上去自由度太大了,应该能求出个解析解才对,于是简单分析了一下之后就给出了个“答案”,结果很快就有群友给出了反例。这时,笔者才意识到这题并非那么平凡,随后正式推导了一番,总算得到了一个可行的算法。正当笔者以为这个问题已经结束时,另一个数学群的群友精妙地构造了新的参数化,证明了算法的复杂度还可以进一步下降!

整个过程波澜起伏,让笔者获益匪浅,遂将过程记录在此,与大家分享。

点击阅读全文...

8 Oct

预训练一下,Transformer的长序列成绩还能涨不少!

作为LLM的主流模型架构,Transformer在各类任务上的总体表现都出色,大多数情况下,Transformer的槽点只是它的平方复杂度,而不是效果——除了一个名为Long Range Arena(下面简称LRA)的Benchmark。一直以来,LRA一直是线性RNN类模型的“主场”,与之相比Transformer在上面有明显的差距,以至于让人怀疑这是否就是Transformer的固有缺陷。

不过,近日论文《Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors》将这“缺失的一环”给补齐了。论文指出,缺乏预训练是Transformer在LRA上效果较差的主要原因,而所有架构都可以通过预训练获得一定的提升,Transformer的提升则更为明显。

旧背景

Long Range Arena(LRA)是长序列建模的一个Benchmark,提出自论文《Long Range Arena: A Benchmark for Efficient Transformers》,从论文标题就可以看出,LRA是为了测试各种Efficient版的Transformer而构建的,里边包含了多种类型的数据,序列长度从1k到16k不等,此前不少Efficient Transformer的工作也都在LRA进行了测试。虽然在代表性方面有些争议,但LRA依然不失为一个测试Efficient Transformer的长序列能力的经典Benchmark。

点击阅读全文...

25 Dec

写了个刷论文的辅助网站:Cool Papers

写在开头

一直以来,笔者都有日刷Arxiv的习惯,以求尽可能跟上领域内最新成果,并告诫自己“不进则退”。之前也有不少读者问我是怎么刷Arxiv的、有什么辅助工具等,但事实上,在很长的时间里,笔者都是直接刷Arxiv官网,并且没有用任何算法过滤,都是自己一篇篇过的。这个过程很枯燥,但并非不能接受,之所以不用算法初筛,主要还是担心算法漏召,毕竟“刷”就是为了追新,一旦算法漏召就“错失先机”了。

自从Kimi Chat发布后,笔者就一直计划着写一个辅助网站结合Kimi来加速刷论文的过程。最近几个星期稍微闲了一点,于是在GPT4、Kimi的帮助下,初步写成了这个网站,并且经过几天的测试和优化后,已经逐步趋于稳定,于是正式邀请读者试用。

Cool Papers:https://papers.cool

点击阅读全文...

1 Jan

新年快乐!记录一下 Cool Papers 的开发体验

上周在《写了个刷论文的辅助网站:Cool Papers》中,笔者分享了一个自己开发的刷论文网站Cool Papers,并得到了一些用户的认可。然而,“使用的人越多,暴露的问题就越多”,当用户量上来后,才感觉到之前写的代码是多么不严谨,于是过去一整周都在不停地修Bug之中,直到今天下午还发现了一个Bug在修。这篇文章简单总结一下笔者在开发和修Bug过程中的感想。

Cool Papers:https://papers.cool

技术

事实上,“papers.cool”这个域名已经注册了四年多,从这可以看出笔者其实很早以前就计划着做类似Cool Papers的网站,也做过一些雏形,但之所以这个网站在四年后才正式诞生,根本原因就只有一个:技术不行。

点击阅读全文...

2 Feb

更便捷的Cool Papers打开方式:Chrome重定向扩展

一些铺垫

自Cool Papers上线以来,很多用户就建议笔者加入搜索功能,后面也确实在前端用JS简单做了个页面内搜索,解决了部分用户的需求,但仍有读者希望引入更完整的全局搜索。诚然,笔者理解这个需求确实是存在,但Cool Papers的数据是逐天累积的,目前才上线一个月,论文数并不多,建立一个大而全的搜索引擎意义不大,其次做搜索也不是笔者的强项,以及并没有很好的利用LLM优化搜索的思路,等等。总而言之,暂时没有条件实现一个全面而又有特色的搜索,所以不如不做(也欢迎大家在评论区集思广益)。

后来,经过和同事讨论,想出了一个“借花献佛”的思路——写一个Chrome的重定向扩展,可以从任意页面重定向到Cool Papers。这样我们可以用任意方式(如Google搜索或者直接Arxiv官方搜索)找到Arxiv上的论文,然后右击一下就转到Cool Papers了。前两周这个扩展已经在Chrome应用商店上线,上周服务器配合做了一些调整,如今大家可以尝试使用了。

扩展地址:Cool Papers Redirector

点击阅读全文...

13 May

缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA

前几天,幻方发布的DeepSeek-V2引起了大家的热烈讨论。首先,最让人哗然的是1块钱100万token的价格,普遍比现有的各种竞品API便宜了两个数量级,以至于有人调侃“这个价格哪怕它输出乱码,我也会认为这个乱码是一种艺术”;其次,从模型的技术报告看,如此便宜的价格背后的关键技术之一是它新提出的MLA(Multi-head Latent Attention),这是对GQA的改进,据说能比GQA更省更好,也引起了读者的广泛关注。

接下来,本文将跟大家一起梳理一下从MHA、MQA、GQA到MLA的演变历程,并着重介绍一下MLA的设计思路。

MHA

MHA(Multi-Head Attention),也就是多头注意力,是开山之作《Attention is all you need》所提出的一种Attention形式,可以说它是当前主流LLM的基础工作。在数学上,多头注意力MHA等价于多个独立的单头注意力的拼接,假设输入的(行)向量序列为$\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_l$,其中$\boldsymbol{x}_i\in\mathbb{R}^d$,那么MHA可以形式地记为

点击阅读全文...

18 Mar

时空之章:将Attention视为平方复杂度的RNN

近年来,RNN由于其线性的训练和推理效率,重新吸引了不少研究人员和用户的兴趣,隐约有“文艺复兴”之势,其代表作有RWKVRetNetMamba等。当将RNN用于语言模型时,其典型特点就是每步生成都是常数的空间复杂度和时间复杂度,从整个序列看来就是常数的空间复杂度和线性的时间复杂度。当然,任何事情都有两面性,相比于Attention动态增长的KV Cache,RNN的常数空间复杂度通常也让人怀疑记忆容量有限,在Long Context上的效果很难比得上Attention。

在这篇文章中,我们表明Causal Attention可以重写成RNN的形式,并且它的每一步生成理论上也能够以$\mathcal{O}(1)$的空间复杂度进行(代价是时间复杂度非常高,远超平方级)。这表明Attention的优势(如果有的话)是靠计算堆出来的,而不是直觉上的堆内存,它跟RNN一样本质上都是常数量级的记忆容量(记忆瓶颈)。

点击阅读全文...

29 Mar

在这个系列的第二篇文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE)——通过绝对位置的形式实现相对位置编码的方案。一开始RoPE是针对一维序列如文本、音频等设计的(RoPE-1D),后来在《Transformer升级之路:4、二维位置的旋转式位置编码》中我们将它推广到了二维序列(RoPE-2D),这适用于图像的ViT。然而,不管是RoPE-1D还是RoPE-2D,它们的共同特点都是单一模态,即纯文本或者纯图像输入场景,那么对于多模态如图文混合输入场景,RoPE该做如何调整呢?

笔者搜了一下,发现鲜有工作讨论这个问题,主流的做法似乎都是直接展平所有输入,然后当作一维输入来应用RoPE-1D,因此连RoPE-2D都很少见。且不说这种做法会不会成为图像分辨率进一步提高时的效果瓶颈,它终究是显得不够优雅。所以,接下来我们试图探寻两者的一个自然结合。

旋转位置

RoPE名称中的“旋转”一词,来源于旋转矩阵$\boldsymbol{\mathcal{R}}_n=\begin{pmatrix}\cos n\theta & -\sin n\theta\\ \sin n\theta & \cos n\theta\end{pmatrix}$,它满足
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\end{equation}

点击阅读全文...