又折腾数学公式插件了
By 苏剑林 | 2013-01-05 | 24412位读者 | 引用从2013.11.15开始,使用MathJax插件。主要原因是MathJax在兼容性方面比ASCIIMath Image Fallback Scripts做得好很多。而且从长远考虑,用MathJax也是应该的。
官方网站:http://www.mathjax.org/
复制数学公式:http://www.mathjax.org/demos/copy-and-paste/
-------以下内容已经过时(写于2013.01.05)--------
原来一直是使用“数学研发论坛”完善的数学公式插件来显示数学公式的,使用很简单,载入速度很快,这样一下子就用了三年了。
不过进入大学后,学习的东西越来越多,数学符号也越来越多,郭大哥的插件的不足也暴露出来了。最要命的是它居然无法显示$\hbar$,这叫我这个学习量子力学的孩子情何以堪...(不过郭大哥新版的插件已经加入了这个符号)。还有另外一个不足的地方,就是郭大哥的插件进行了大量的化简,使得数学公式的输入简单了不少,但是反而对标准的Latex代码支持不足了。久而久之,会带来一个弊端,就是迁移性不强。万一哪天这个插件无法使用了,就难以找到替代品了。考虑到这些,我写latex代码的时候总是用标准的语法而不用简化语法,后来$\hbar$的问题出来后,一下子用上了MathJax这个强大的插件(考虑过JsMath,但是发现它的行内公式显示效果不大好)。
校外通过VPN通道访问华师资源
By 苏剑林 | 2013-01-23 | 38175位读者 | 引用在学校使用校园网时,是很容易访问到华师内部的各个网站的,比如教务系统、图书馆电子资源等,但是如果使用校外网或者是在家时就不那么容易了。另外一种情况是,期末同学回家了,很想早点知道成绩,一般我们会上http://jwc.scnu.edu.cn查询,这个网站在校内校外都可以登陆,但是通常来说为了成绩的录入,会把成绩查询功能关闭掉一段时间,事实上,大部分的成绩都已经录入了。在校园网时,心急的朋友可以访问http://222.201.93.5:211来查询,可是这个网址在校外是不能用的。VPN通道就是为这些校外需求而开通的。
使用方法很简单,打开
https://121.8.171.37/
输入校园卡的账号密码登陆就行了。登录后就会出现校内网的各种链接,包括图书馆资源、教务系统等等。
高斯型积分的微扰展开(二)
By 苏剑林 | 2015-03-07 | 23422位读者 | 引用为什么第二篇姗姗来迟?
其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673
这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。
后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。
曾经我会一字不差地看完你的日志,
一点蛋疼的破事都会当成宝贝一样。
和你分享,
跟你在一起,
笑点低的莫名其妙。
你知道我所有的事,
我也收藏着你太多的秘密。
我们可以一直聊到凌晨,
好像从来不缺话题。
可是...
可是...
后来,我们慢慢失去了联系。
等我们发现
时间是贼了,
它早己把我们
说不完的话
偷光了。
偶尔遇见,
也只能尴尬一笑,
寒暄几句,
便再无联络。
你一定以为无情的我把过去都忘记了,
你以为我把你看得不再重要。
那么,你肯定不知道,
我常梦见我们一起仰望过的那片天空呢。
亲爱的老朋友,
和亲爱的曾经心心相印的人。
不联系不是因为你不重要,
而是我好怕,
我不再重要。
昨天在上“科学计算软件”课时,讲到了一个“抢15”游戏(Pick15),就是在1~9这9个数字中,双方轮流选一个数字,不可重复,谁的数字中有三个数字的和为15的,谁就是赢家。
这是个简单的游戏,属于博弈论范畴。在博弈论中有一个著名的“策梅洛定理”(Zermelo's theorem),它指出在二人的有限游戏中,如果双方皆拥有完全的资讯,并且运气因素并不牵涉在游戏中,那先行或后行者当一必有一方有必胜/必不败的策略。比如中国象棋就属于这一类游戏,它告诉我们对于其中一方必有一种必不败策略(有可能和棋,有可能胜,反正不会输)。当然,策梅洛定理只是告诉我们其存在性,并没有告诉我们怎么发现这个策略,甚至连哪一方有这种最优策略都没有给出判别方法。这是幸运的,因为如果真有一天发现了这种策略,那么像象棋这类博弈就失去了意义了。
上述的抢15游戏当然也属于这类游戏。不同于象棋的千变万化,它的变化比较简单,而且很容易看出它对先手有着明显的优势。下面我们来分析一下。
纠缠的时空(三):长度收缩和时间延缓
By 苏剑林 | 2013-04-18 | 29984位读者 | 引用我们之前通过矩阵变换方式推导出了洛伦兹变换以及速度合成公式等结论,不得不说,矩阵推导方式有种引人入胜的魅力。今天,在讲述相对论(包括电动力学、广义相对论)的书籍里边,在数学形式上取而代之了张量这一工具,这实际上是对矩阵的一个推广(之前已经提到过,二阶张量相当于矩阵)。采用这样的形式在于它充分体现了相对论的对称和变换关系。本文将来谈及狭义相对论的一些基本结论,包括同时性、长度收缩、时间延缓等。
本文的光速$c=1$。
同时的相对性
在同一时空中,采取两个时空坐标进行洛伦兹变换,再作差,我们得到:
\begin{equation}\left[\begin{array}{c} \Delta x\\ \Delta t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}\Delta x'\\ \Delta t' \end{array}\right]\end{equation}
正项级数敛散性最有力的判别法?
By 苏剑林 | 2013-05-17 | 94916位读者 | 引用在学习正项级数的时候,我们的数学分析教材提供了各种判别法,比如积分判别法、比较判别法,并由此衍生出了根植法、比值法等,在最后提供了一个比较精细的“Raabe判别法”。这些方法的精度(强度)各不相同,一般认为“Raabe判别法”的应用范围最广的。但是在我看来,基于p级数的比较判别法已经可以用于所有题目了,它才是最强的方法。
p级数就是我们熟悉的
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
通过积分判别法可以得到当p>1时该级数收敛,反之发散。虽然我不能证明,但是我觉得以下结论是成立的:
若正项级数$\sum_{n=1}^{\infty} a_n$收敛,则总可以找到一个常数A以及一个大于1的常数p,使每项都有$a_n < \frac{A}{n^p}$。
最近评论