8 Jan

最近把优化算法跟动力学结合起来思考得越来越起劲了,这是优化算法与动力学系列的第三篇,我有预感还会有第4篇,敬请期待~

简单来个剧情回顾:第一篇中我们指出了其实SGD相当于常微分方程(ODE)的数值解法:欧拉法;第二篇我们还是数值解法的误差分析的角度,分析了为什么可以通过梯度来调节学习率,因此也就解释了RMSprop、Adam等算法中,用梯度调节学习率的原理。

本文将给出一个更统一的观点来看待这两个事情,并且试图回答一个更本质的问题:为什么是梯度下降?

(注:本文的讨论没有涉及到动量加速部分。)

点击阅读全文...

1 Mar

构造一个显式的、总是可逆的矩阵

《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》一文我们得到矩阵$\exp(\boldsymbol{A})$总是可逆的,它的逆就是$\exp(-\boldsymbol{A})$。问题是$\exp(\boldsymbol{A})$只是一个理论定义,单纯这样写没有什么价值,因为它要把每个$\boldsymbol{A}^n$都算出来。

有没有什么具体的例子呢?有,本文来构造一个显式的、总是可逆的矩阵。

其实思路非常简单,假设$\boldsymbol{x},\boldsymbol{y}$是两个$k$维列向量,那么$\boldsymbol{x}\boldsymbol{y}^{\top}$就是一个$k\times k$的矩阵,我们就来考虑
\begin{equation}\begin{aligned}\exp\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)=&\sum_{n=0}^{\infty}\frac{\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)^n}{n!}\\
=&\boldsymbol{I}+\boldsymbol{x}\boldsymbol{y}^{\top}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{2}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{6}+\dots\end{aligned}\end{equation}

点击阅读全文...

19 Apr

从DCGAN到SELF-MOD:GAN的模型架构发展一览

事实上,O-GAN的发现,已经达到了我对GAN的理想追求,使得我可以很惬意地跳出GAN的大坑了。所以现在我会试图探索更多更广的研究方向,比如NLP中还没做过的任务,又比如图神经网络,又或者其他有趣的东西。

不过,在此之前,我想把之前的GAN的学习结果都记录下来。

这篇文章中,我们来梳理一下GAN的架构发展情况,当然主要的是生成器的发展,判别器一直以来的变动都不大。还有,本文介绍的是GAN在图像方面的模型架构发展,跟NLP的SeqGAN没什么关系。

此外,关于GAN的基本科普,本文就不再赘述了。

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

点击阅读全文...

12 Jan

前些天刷Arxiv看到新文章《Self-Orthogonality Module: A Network Architecture Plug-in for Learning Orthogonal Filters》(下面简称“原论文”),看上去似乎有点意思,于是阅读了一番,读完确实有些收获,在此记录分享一下。

给全连接或者卷积模型的核加上带有正交化倾向的正则项,是不少模型的需求,比如大名鼎鼎的BigGAN就加入了类似的正则项。而这篇论文则引入了一个新的正则项,笔者认为整个分析过程颇为有趣,可以一读。

为什么希望正交?

在开始之前,我们先约定:本文所出现的所有一维向量都代表列向量。那么,现在假设有一个$d$维的输入样本$\boldsymbol{x}\in \mathbb{R}^d$,经过全连接或卷积层时,其核心运算就是:
\begin{equation}\boldsymbol{y}^{\top}=\boldsymbol{x}^{\top}\boldsymbol{W},\quad \boldsymbol{W}\triangleq (\boldsymbol{w}_1,\boldsymbol{w}_2,\dots,\boldsymbol{w}_k)\label{eq:k}\end{equation}
其中$\boldsymbol{W}\in \mathbb{R}^{d\times k}$是一个矩阵,它就被称“核”(全连接核/卷积核),而$\boldsymbol{w}_1,\boldsymbol{w}_2,\dots,\boldsymbol{w}_k\in \mathbb{R}^{d}$是该矩阵的各个列向量。

点击阅读全文...

20 May

函数光滑化杂谈:不可导函数的可导逼近

一般来说,神经网络处理的东西都是连续的浮点数,标准的输出也是连续型的数字。但实际问题中,我们很多时候都需要一个离散的结果,比如分类问题中我们希望输出正确的类别,“类别”是离散的,“类别的概率”才是连续的;又比如我们很多任务的评测指标实际上都是离散的,比如分类问题的正确率和F1、机器翻译中的BLEU,等等。

还是以分类问题为例,常见的评测指标是正确率,而常见的损失函数是交叉熵。交叉熵的降低与正确率的提升确实会有一定的关联,但它们不是绝对的单调相关关系。换句话说,交叉熵下降了,正确率不一定上升。显然,如果能用正确率的相反数做损失函数,那是最理想的,但正确率是不可导的(涉及到$\text{argmax}$等操作),所以没法直接用。

这时候一般有两种解决方案;一是动用强化学习,将正确率设为奖励函数,这是“用牛刀杀鸡”的方案;另外一种是试图给正确率找一个光滑可导的近似公式。本文就来探讨一下常见的不可导函数的光滑近似,有时候我们称之为“光滑化”,有时候我们也称之为“软化”。

max

后面谈到的大部分内容,基础点就是$\max$操作的光滑近似,我们有:
\begin{equation}\max(x_1,x_2,\dots,x_n) = \lim_{K\to +\infty}\frac{1}{K}\log\left(\sum_{i=1}^n e^{K x_i}\right)\end{equation}

点击阅读全文...

16 Jul

“让Keras更酷一些!”:层中层与mask

这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。

层中层

《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义buildcall两个函数,其中build负责创建可训练的权重,而call则定义具体的运算。

拒绝重复劳动

经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build中增加一个kernelbias变量(还要自定义变量的初始化、正则化等),然后在call里边用K.dot来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。

点击阅读全文...

3 Sep

百度实体链接比赛后记:行为建模和实体链接

前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~

本文的实体链接模型总图(可以点击查看大图)

本文的实体链接模型总图(可以点击查看大图)

赛题介绍

所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。

点击阅读全文...

31 Oct

从去噪自编码器到生成模型

在我看来,几大顶会之中,ICLR的论文通常是最有意思的,因为它们的选题和风格基本上都比较轻松活泼、天马行空,让人有脑洞大开之感。所以,ICLR 2020的投稿论文列表出来之后,我也抽时间粗略过了一下这些论文,确实发现了不少有意思的工作。

其中,我发现了两篇利用去噪自编码器的思想做生成模型的论文,分别是《Learning Generative Models using Denoising Density Estimators》《Annealed Denoising Score Matching: Learning Energy-Based Models in High-Dimensional Spaces》。由于常规做生成模型的思路我基本都有所了解,所以这种“别具一格”的思路就引起了我的兴趣。细读之下,发现两者的出发点是一致的,但是具体做法又有所不同,最终的落脚点又是一样的,颇有“一题多解”的美妙,遂将这两篇论文放在一起,对比分析一翻。

fashion mnist、CelebA、cifar10上的生成效果

fashion mnist、CelebA、cifar10上的生成效果

点击阅读全文...