18 Oct

【理解黎曼几何】5. 黎曼曲率

现在我们来关注黎曼曲率。总的来说,黎曼曲率提供了一种方案,让身处空间内部的人也能计算自身所处空间的弯曲程度。俗话说,“不识庐山真面目,只缘身在此山中”,还有“当局者迷,旁观者清”,等等,因此,能够身处空间之中而发现空间中的弯曲与否,是一件很了不起的事情,就好像我们已经超越了我们现有的空间,到了更高维的空间去“居高临下”那样。真可谓“心有多远,路就有多远,世界就有多远”。

如果站在更高维空间的角度看,就容易发现空间的弯曲。比如弯曲空间中有一条测地线,从更高维的空间看,它就是一条曲线,可以计算曲率等,但是在原来的空间看,它就是直的,测地线就是直线概念的一般化,因此不可能通过这种途径发现空间的弯曲性,必须有一些迂回的途径。可能一下子不容易想到,但是各种途径都殊途同归后,就感觉它是显然的了。

怎么更好地导出黎曼曲率来,使得它能够明显地反映出弯曲空间跟平直空间的本质区别呢?为此笔者思考了很长时间,看了不少参考书(《引力与时空》、《场论》、《引力论》等),比较了几种导出黎曼曲率的方式,简要叙述如下。

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

11 Nov

【外微分浅谈】7. 有力的计算

这里我们将展示上面一节的方法对于计算黎曼曲率张量的计算是多少的有力!我们再次列出我们得到的所有公式。首先是概念式的
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{65} $$
然后是
$$\begin{aligned}&d\eta_{\mu\nu}=\omega_{\nu\mu}+\omega_{\mu\nu}=\eta_{\nu\alpha}\omega_{\mu}^{\alpha}+\eta_{\mu \alpha}\omega_{\nu}^{\alpha}\\
&d\omega^{\mu}+\omega_{\nu}^{\mu}\land \omega^{\nu}=0\end{aligned} \tag{66} $$
这两个可以帮助我们确定$\omega_{\nu}^{\mu}$;接着就是
$$\mathscr{R}_{\nu}^{\mu} = d\omega_{\nu}^{\mu}+\omega_{\alpha}^{\mu} \land \omega_{\nu}^{\alpha} \tag{67} $$
最后你要正交标架下的$\hat{R}^{\mu}_{\nu\beta\gamma}$,就要写出:
$$\mathscr{R}_{\nu}^{\mu}=\sum_{\beta < \gamma} \hat{R}^{\mu}_{\nu\beta\gamma}\omega^{\beta}\land \omega^{\gamma} \tag{68} $$
如果你要原始标架下的$R^{\mu}_{\nu\beta\gamma}$,就要写出
$$(h^{-1})_{\mu'}^{\mu}\mathscr{R}^{\mu'}_{\nu'}h_{\nu}^{\nu'} = \sum_{\beta < \gamma} R^{\mu}_{\nu\beta\gamma}dx^{\beta}\land dx^{\gamma} \tag{69} $$
然后依次读出$R^{\mu}_{\nu\beta\gamma}$,就像制表一样。

点击阅读全文...

1 May

【不可思议的Word2Vec】 4.不一样的“相似”

相似度的定义

当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。

等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?

要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。

回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。

点击阅读全文...

22 Jul

Keras中自定义复杂的loss函数

Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架,以theano为后端,而如今Keras已经同时支持四种后端:theano、tensorflow、cntk、mxnet(前三种官方支持,mxnet还没整合到官方中),由此可见Keras的魅力。

Keras是很方便,然而这种方便不是没有代价的,最为人诟病之一的缺点就是灵活性较低,难以搭建一些复杂的模型。的确,Keras确实不是很适合搭建复杂的模型,但并非没有可能,而是搭建太复杂的模型所用的代码量,跟直接用tensorflow写也差不了多少。但不管怎么说,Keras其友好、方便的特性(比如那可爱的训练进度条),使得我们总有使用它的场景。这样,如何更灵活地定制Keras模型,就成为一个值得研究的课题了。这篇文章我们来关心自定义loss。

输入-输出设计

Keras的模型是函数式的,即有输入,也有输出,而loss即为预测值与真实值的某种误差函数。Keras本身也自带了很多loss函数,如mse、交叉熵等,直接调用即可。而要自定义loss,最自然的方法就是仿照Keras自带的loss进行改写。

点击阅读全文...

16 Oct

如何划分一个跟测试集更接近的验证集?

不管是打比赛、做实验还是搞工程,我们经常会遇到训练集与测试集分布不一致的情况。一般来说我们会从训练集中划分出来一个验证集,通过这个验证集来调整一些超参数(参考《训练集、验证集和测试集的意义》),比如控制模型的训练轮数以防止过拟合。然而,如果验证集本身跟测试集差别比较大,那么验证集上很好的模型也不代表在测试集上很好,因此如何让划分出来验证集跟测试集的分布差异更小一些,是一个值得研究的题目。

两种情况

首先,明确一下,本文所考虑的,是能给拿到测试集数据本身、但不知道测试集标签的场景。如果是那种提交模型封闭评测的场景,我们完全看不到测试集的,那就没什么办法了。为什么会出现测试集跟训练集分布不一致的现象呢?主要有两种情况。

点击阅读全文...

10 Sep

RNN模型中输入的重要性的评估

Saliency Maps for RNN

RNN是很多序列任务的不二法门,比如文本分类任务的常用方法就是“词向量+LSTM+全连接分类器”。如下图

RNN分类器

RNN分类器

假如这样的一个模型可以良好地工作,那么现在考虑一个任务是:如何衡量输入$w_1,\dots,w_n$对最终的分类结果的影响的重要程度(Saliency)呢?例如假设这是一个情感分类任务,那么怎么找出是哪些词对最终的分类有较为重要的影响呢?本文给出了一个较为直接的思路。

思路的原理很简单,因为我们是将RNN最后一步的状态向量(也就是绿色阴影所代表的向量)传递给后面的分类器进行分类的,因此最后一步的状态向量$\boldsymbol{h}_n$就是一个目标向量。而RNN是一个递推的过程,

点击阅读全文...

19 Nov

更别致的词向量模型(一):simpler glove

如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。

本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:

如果去构造一个词向量模型?

为什么用余弦值来做近义词搜索?向量的内积又是什么含义?

词向量的模长有什么特殊的含义?

为什么词向量具有词类比性质?(国王-男人+女人=女王)

得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?

这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。

围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。

点击阅读全文...