29 Mar

为什么Pre Norm的效果不如Post Norm?

Pre Norm与Post Norm之间的对比是一个“老生常谈”的话题了,本博客就多次讨论过这个问题,比如文章《浅谈Transformer的初始化、参数化与标准化》《模型优化漫谈:BERT的初始标准差为什么是0.02?》等。目前比较明确的结论是:同一设置之下,Pre Norm结构往往更容易训练,但最终效果通常不如Post Norm。Pre Norm更容易训练好理解,因为它的恒等路径更突出,但为什么它效果反而没那么好呢?

笔者之前也一直没有好的答案,直到前些时间在知乎上看到 @唐翔昊 的一个回复后才“恍然大悟”,原来这个问题竟然有一个非常直观的理解!本文让我们一起来学习一下。

点击阅读全文...

25 May

从重参数的角度看离散概率分布的构建

一般来说,神经网络的输出都是无约束的,也就是值域为$\mathbb{R}$,而为了得到有约束的输出,通常是采用加激活函数的方式。例如,如果我们想要输出一个概率分布来代表每个类别的概率,那么通常在最后加上Softmax作为激活函数。那么一个紧接着的疑问就是:除了Softmax,还有什么别的操作能生成一个概率分布吗?

《漫谈重参数:从正态分布到Gumbel Softmax》中,我们介绍了Softmax的重参数操作,本文将这个过程反过来,即先定义重参数操作,然后去反推对应的概率分布,从而得到一个理解概率分布构建的新视角。

问题定义

假设模型的输出向量为$\boldsymbol{\mu}=[\mu_1,\cdots,\mu_n]\in\mathbb{R}^n$,不失一般性,这里假设$\mu_i$两两不等。我们希望通过某个变换$\mathcal{T}$将$\boldsymbol{\mu}$转换为$n$元概率分布$\boldsymbol{p}=[p_1,\cdots,p_n]$,并保持一定的性质。比如,最基本的要求是:
\begin{equation}{\color{red}1.}\,p_i\geq 0 \qquad {\color{red}2.}\,\sum_i p_i = 1 \qquad {\color{red}3.}\,p_i \geq p_j \Leftrightarrow \mu_i \geq \mu_j\end{equation}

点击阅读全文...

14 Jun

通向概率分布之路:盘点Softmax及其替代品

不论是在基础的分类任务中,还是如今无处不在的注意力机制中,概率分布的构建都是一个关键步骤。具体来说,就是将一个$n$维的任意向量,转换为一个$n$元的离散型概率分布。众所周知,这个问题的标准答案是Softmax,它是指数归一化的形式,相对来说比较简单直观,同时也伴有很多优良性质,从而成为大部分场景下的“标配”。

尽管如此,Softmax在某些场景下也有一些不如人意之处,比如不够稀疏、无法绝对等于零等,因此很多替代品也应运而生。在这篇文章中,我们将简单总结一下Softmax的相关性质,并盘点和对比一下它的部分替代方案。

Softmax回顾

首先引入一些通用记号:$\boldsymbol{x} = (x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$是需要转为概率分布的$n$维向量,它的分量可正可负,也没有限定的上下界。$\Delta^{n-1}$定义为全体$n$元离散概率分布的集合,即
\begin{equation}\Delta^{n-1} = \left\{\boldsymbol{p}=(p_1,p_2,\cdots,p_n)\left|\, p_1,p_2,\cdots,p_n\geq 0,\sum_{i=1}^n p_i = 1\right.\right\}\end{equation}
之所以标注$n-1$而不是$n$,是因为约束$\sum\limits_{i=1}^n p_i = 1$定义了$n$维空间中的一个$n-1$维子平面,再加上$p_i\geq 0$的约束,$(p_1,p_2,\cdots,p_n)$的集合就只是该平面的一个子集,即实际维度只有$n-1$。

点击阅读全文...

30 Apr

蘑菇的最优形状模型

淡白口蘑

淡白口蘑

达尔文的进化学说告诉我们,自然界总是在众多的生物中挑出最能够适应环境的物种,赋予它们更高的生存几率,久而久之,这些物种经过亿万年的“优胜劣汰”,进化成了今天的千奇百怪的生物。无疑,经过长期的选择,优良的形状会被累积下来,换句话讲,这些物种在某些环境适应能力方面已经达到最优或近乎最优的状态(又是一个极值问题了)。好,现在我们来考虑蘑菇。

蘑菇是一种真菌生物,一般生长在阴暗潮湿的环境中。喜欢湿润的它自然也不希望散失掉过多的水分,因此,它努力地调整自身的形状,使它的“失水”尽可能地少。假设单位面积的蘑菇的失水速度是一致的,那么问题就变成了使一个给定体积的立体表面积尽可能少的问题了。并且考虑到水平各向同性生长的问题,理想的蘑菇形状应该就是一个平面图形的旋转体。那么这个旋转体是什么呢?聪明的你是否想到了是一个球体(的一部分)呢?

点击阅读全文...

8 Jul

【个人翻译】变暖的地球对冷血动物来说过热?

翻译语录:
这是一篇关于气候变暖对变温动物的影响的文章。原文很长,来自“科学美国人”网站,本文有所删减。
在人类不断报道气候变化对人类所造成的影响的时候,自然界的其他生物也在受着气候的影响。也许,自然界的其他生物才是最大的受害者。无论如何,为了我们,为了自然,为了地球,为了后代,我们都应该自觉地去减少温室效应。只要人人都节约一点点,世界就会多一片绿色、一片蓝天!

点击阅读全文...

8 Jul

古老的火山爆发造成地球冰期?

翻译语录:总的来说,这篇文章的翻译还是比较顺利,不懂的词查一下软件就OK,所以这次要说一下翻译以外的问题:众所周知,二氧化碳会造成温室效应,而二氧化硫能够抑制温室效应。不过糟糕的是,几乎所有大气环境治理手段都将把其它污染性气体转变成二氧化碳为目标,包括处理二氧化硫。这就造成了约治理环境,温室效应越强的问题。这时我们的环境学家也应考虑下两者的均衡问题了

图片说明:俄罗斯Kamtchatka火山爆发

图片说明:俄罗斯Kamtchatka火山爆发

点击阅读全文...

9 Jul

植物拯救了地球,阻止寒冷灭绝之灾!

笔者语录:现在温室效应愈演愈烈。不过,在千万年前,情况正好相反,二氧化碳含量的急剧下降,使地球越来越冷。而一个“救星”的出现挽救了地球!这个伟大的“救星”,就是我们随处可见的植物。现在,就让我们随着《新科学家》的脚步,去看看那远古的“救星”!

图片说明:原始森林。来自搜索引擎,图片有可能经过PS。

图片说明:原始森林。来自搜索引擎,图片有可能经过PS。

点击阅读全文...

6 Aug

五种零食揭示宇宙的形状

很久没有翻译过文章了,最近都在偷懒中......不过不能总是偷懒,也要锻炼下了。今天翻译了一篇关于“宇宙模型”的文章,原文来自《新科学家》。原来,宇宙与我们平时吃的零食很相似...... 面包圈、薯片、号角、花生、苹果,这些是你心目中的宇宙吗?让我们来共同见识下!

点击阅读全文...