2 Nov

利用CUR分解加速交互式相似度模型的检索

文本相似度有“交互式”和“特征式”两种做法,想必很多读者对此已经不陌生,之前笔者也写过一篇文章《CoSENT(二):特征式匹配与交互式匹配有多大差距?》来对比两者的效果。总的来说,交互式相似度效果通常会好些,但直接用它来做大规模检索是不现实的,而特征式相似度则有着更快的检索速度,以及稍逊一筹的效果。

因此,如何在保证交互式相似度效果的前提下提高它的检索速度,是学术界一直都有在研究的课题。近日,论文《Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization》提出了一份新的答卷:CUR分解。

CUR分解示意图

CUR分解示意图

点击阅读全文...

21 Sep

《生成扩散模型漫谈(十):统一扩散模型(理论篇)》中,笔者自称构建了一个统一的模型框架(Unified Diffusion Model,UDM),它允许更一般的扩散方式和数据类型。那么UDM框架究竟能否实现如期目的呢?本文通过一些具体例子来演示其一般性。

框架回顾

首先,UDM通过选择噪声分布$q(\boldsymbol{\varepsilon})$和变换$\boldsymbol{\mathcal{F}}$来构建前向过程
\begin{equation}\boldsymbol{x}_t = \boldsymbol{\mathcal{F}}_t(\boldsymbol{x}_0,\boldsymbol{\varepsilon}),\quad \boldsymbol{\varepsilon}\sim q(\boldsymbol{\varepsilon})\end{equation}
然后,通过如下的分解来实现反向过程$\boldsymbol{x}_{t-1}\sim p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$的采样
\begin{equation}\hat{\boldsymbol{x}}_0\sim p(\boldsymbol{x}_0|\boldsymbol{x}_t)\quad \& \quad \boldsymbol{x}_{t-1}\sim p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0=\hat{\boldsymbol{x}}_0)\end{equation}
其中$p(\boldsymbol{x}_0|\boldsymbol{x}_t)$就是用$\boldsymbol{x}_t$预估$\boldsymbol{x}_0$的概率,一般用简单分布$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$来近似建模,训练目标基本上就是$-\log q(\boldsymbol{x}_0|\boldsymbol{x}_t)$或其简单变体。当$\boldsymbol{x}_0$是连续型数据时,$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$一般就取条件正态分布;当$\boldsymbol{x}_0$是离散型数据时,$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$可以选择自回归模型或者非自回归模型。

点击阅读全文...

28 Sep

生成扩散模型漫谈(十二):“硬刚”扩散ODE

《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们从SDE的角度理解了生成扩散模型,然后在《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们知道SDE对应的扩散模型中,实际上隐含了一个ODE模型。无独有偶,在《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中我们也知道原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。

细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。

微分方程

像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。

点击阅读全文...

25 Oct

圆内随机n点在同一个圆心角为θ的扇形的概率

这几天网上热传了一道“四鸭共半圆”题目:

四鸭共半圆问题

四鸭共半圆问题

可能有不少读者看到后也尝试做过,就连李永乐老师也专门开了一节课讲这道题(参考《圆形水池四只鸭子在同一个半圆里,概率有多大?》)。就这道题目本身而言,答案并不算困难,可以有很多方法算出来。稍微有难度的是它的推广版本,也就是本文标题所描述的,将鸭子的数目一般化为$n$只,将半圆一般化为圆心角为$\theta$的扇形。更有趣的是,当$\theta \leq \pi$时,依然有比较初等的解法,但是当$\theta > \pi$后,复杂度开始“剧增”...

点击阅读全文...

22 Dec

上周笔者写了《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀),本以为已经窥见了构建ODE扩散模型的一般规律,结果不久后评论区大神 @gaohuazuo 就给出了一个构建格林函数更高效、更直观的方案,让笔者自愧不如。再联想起之前大神之前在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》同样也给出了一个关于扩散ODE的精彩描述(间接启发了上一篇博客的结果),大神的洞察力不得不让人叹服。

经过讨论和思考,笔者发现大神的思路本质上就是一阶偏微分方程的特征线法,通过构造特定的向量场保证初值条件,然后通过求解微分方程保证终值条件,同时保证了初值和终值条件,真的非常巧妙!最后,笔者将自己的收获总结成此文,作为上一篇的后续。

前情回顾

简单回顾一下上一篇文章的结果。假设随机变量$\boldsymbol{x}_0\in\mathbb{R}^d$连续地变换成$\boldsymbol{x}_T$,其变化规律服从ODE
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq-ode}\end{equation}

点击阅读全文...

30 Nov

用热传导方程来指导自监督学习

用理论物理来卷机器学习已经不是什么新鲜事了,比如上个月介绍的《生成扩散模型漫谈(十三):从万有引力到扩散模型》就是经典一例。最近一篇新出的论文《Self-Supervised Learning based on Heat Equation》,顾名思义,用热传导方程来做(图像领域的)自监督学习,引起了笔者的兴趣。这种物理方程如何在机器学习中发挥作用?同样的思路能否迁移到NLP中?让我们一起来读读论文。

基本方程

如下图,左边是物理中热传导方程的解,右端则是CAM积分梯度等显著性方法得到的归因热力图,可以看到两者有一定的相似之处,于是作者认为热传导方程可以作为好的视觉特征的一个重要先验。

热方程的热力图(左)和视觉模型的热力图(右)

热方程的热力图(左)和视觉模型的热力图(右)

点击阅读全文...

15 Dec

书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。

本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。

基础结论

要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。

考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}

点击阅读全文...

28 Dec

Transformer升级之路:6、旋转位置编码的完备性分析

在去年的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE),当时的出发点只是觉得用绝对位置来实现相对位置是一件“很好玩的事情”,并没料到其实际效果还相当不错,并为大家所接受,不得不说这真是一个意外之喜。后来,在《Transformer升级之路:4、二维位置的旋转式位置编码》中,笔者讨论了二维形式的RoPE,并研究了用矩阵指数表示的RoPE的一般解。

既然有了一般解,那么自然就会引出一个问题:我们常用的RoPE,只是一个以二维旋转矩阵为基本单元的分块对角矩阵,如果换成一般解,理论上效果会不会更好呢?本文就来回答这个问题。

指数通解

《Transformer升级之路:4、二维位置的旋转式位置编码》中,我们将RoPE抽象地定义为任意满足下式的方阵
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\label{eq:re}\end{equation}

点击阅读全文...