16 Aug

《方程与宇宙》:拉格朗日点,复数,向量(五)

The New Calculation Of Lagrangian Point 4,5

上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)

对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...

点击阅读全文...

23 Aug

《向量》系列——4.天旋地转(向量,复数,极坐标)

坐标旋转

坐标旋转

如图,坐标(x,y)绕点(p,q)逆时针旋转θ角后得到坐标(x',y'),求x',y'关于x,y的表达式。

点击阅读全文...

27 Aug

与向量的渊源极深的四元数

当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?

当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。

点击阅读全文...

29 Aug

计算夏至的精确时刻2——提高精确度

之前曾经得到过一条计算夏至精确时间的公式,现在检验一下(之前推导是根据了2009年的数据)

公元Y年的夏至日期为该年的6月
$$21.9938+0.2422Y-\lfloor Y/4 \rfloor-\lfloor Y/400 \rfloor+\lfloor Y/100 \rfloor$$
其中$\lfloor x \rfloor$表示整数部分。

点击阅读全文...

2 Oct

关于行星留周期的几何讨论

关于行星留的周期的计算,我们之前已经讨论过这个问题,利用的是微积分的方法。也许不少还没有高数基础的朋友会感到很头晕,因此在这里给出一个从几何方面讨论的推导。

关于留,很多人认为就是行星相对于地球的速度为0的时刻,其实这个说法稍欠准确,严格来讲应该要将速度改为“角速度”或“切向速度”(天文的切向就是指与视线方向垂直的方向)。实际的运动中,没有哪一瞬间行星相对于地球的运动速度是为0的。根据这句话,我们可以作出下面的图(依旧只考虑正圆运动):

行星留-运动分析

行星留-运动分析

点击阅读全文...

3 Oct

《向量》系列——5.平面向量微分方程与复数

首先我们考虑一个复微分方程
$$\dot{z}=f(z,t)\tag{1}$$如果令$z=x+yi,f(z,t)=f(x+yi,t)=g(x,y,t)+i*h(x,y,t)$,则方程对应于
$$\begin{aligned}\dot{x}=g(x,y,t) \\ \dot{y}=h(x,y,t)\end{aligned}$$
这说明,二元微分方程在一定程度上等价于复微分方程。

点击阅读全文...

4 Oct

哈勃定律——宇宙各向同性的体现

universe_mystery_expand

universe_mystery_expand

1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。

不少宇宙学的书籍中都提到了标题,那么,为什么哈勃定律是宇宙各向同性的体现?或者说为什么宇宙各向同性就必然导致哈勃定律?

首先我们得需要了解一下宇宙学原理,它告诉我们宇宙在大尺度范围是均匀的、各向同性的。基于这个原理,我们会得到一些很奇怪的东西,如宇宙中的每一点都是宇宙的中心。另外,我们还可以得到:宇宙的(整体)运动情况在每一个方向都应该取相同的形式。

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...