《向量》系列——4.天旋地转(向量,复数,极坐标)
By 苏剑林 | 2010-08-23 | 39142位读者 | 引用与向量的渊源极深的四元数
By 苏剑林 | 2010-08-27 | 32222位读者 | 引用当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?
当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。
计算夏至的精确时刻2——提高精确度
By 苏剑林 | 2010-08-29 | 16173位读者 | 引用关于行星留周期的几何讨论
By 苏剑林 | 2010-10-02 | 16784位读者 | 引用《向量》系列——5.平面向量微分方程与复数
By 苏剑林 | 2010-10-03 | 20362位读者 | 引用哈勃定律——宇宙各向同性的体现
By 苏剑林 | 2010-10-04 | 22135位读者 | 引用1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。
不少宇宙学的书籍中都提到了标题,那么,为什么哈勃定律是宇宙各向同性的体现?或者说为什么宇宙各向同性就必然导致哈勃定律?
首先我们得需要了解一下宇宙学原理,它告诉我们宇宙在大尺度范围是均匀的、各向同性的。基于这个原理,我们会得到一些很奇怪的东西,如宇宙中的每一点都是宇宙的中心。另外,我们还可以得到:宇宙的(整体)运动情况在每一个方向都应该取相同的形式。
以自然数幂为系数的幂级数
By 苏剑林 | 2010-10-16 | 31154位读者 | 引用$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。
这个星期对微分方程的认识
By 苏剑林 | 2010-11-06 | 34877位读者 | 引用这个星期研究了两道微分方程问题:“导弹跟踪”以及“太阳炉”问题。从中我加深了对微分方程的理解,也熟悉了微分方程的相关运算。仅此记录,权当抛砖引玉。
一、微分方程的本质
很多读者都知道,自从牛顿和莱布尼兹发明微积分之后,微积分就迅速地渗透到了几乎所有的学科,后来发展出许多出色的分支,如变分、微分方程等。众所周知,微分方程是解决很多重要问题的工具。不知道各位读者对微分及微分方程的认识如何?其实对于常微分方程而言,它的本质和我们已经学习过的代数方程一样,只不过相互之间的对应运算关系除了常规的加减乘除幂等之外,还多了两个相互关系:微分和积分。例如对于一阶微分方程$\dot{y}=f(x,y)$,也许大家都认为它是一个二元方程,其实不然,这是一个“四个未知数、三道方程”所组成的方程组,我们可以将它写成
$$dy=f(x,y)dx,y=\int dy,x=\int dx$$
最近评论