27 Feb

“n次方程有n个根”的证明

代数基本定理:任何一个一元复系数多项式都至少有一个复数根。也就是说,复数域是代数封闭的。

虽说这有其名,但却无其实,它并不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理(Fundamental theorem of algebra)。

建立在此前提上,我们可以推出:

一元复系数n次代数方程在复数范围内都有n个根(有可能是共轨复根)。

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...

6 Mar

谈大气消光和大气折光

其实太阳已经落到了地平线以下(大气折光)

其实太阳已经落到了地平线以下(大气折光)

苏剑林(BoJone) 编写/翻译

实际感受:

大家也许会有这样的生活经验:早上的太阳没有中午的太阳猛烈?从东方升起到我们的头顶,月亮一直在变“亮”?……这些现象都与地球大气的“消光”现象密切相关!

众所周知,地球有一层厚厚的大气,既是我们呼吸的来源,也是我们生命的保护伞。他为我们提供了臭氧层,也为我们提供了蓝天和风霜雨露,还为我们送上了绚丽的彩虹。然而,在天文学角度,大气却是我们的“障碍”,浓厚的大气不利于我们对宇宙进行清晰的观测。因此,天文学家们一直希望把天文台建立海拔更高的地方,因为那里有着稀薄的大气……为了渴求更高的清晰度,人们甚至把望远镜放到了地球之外。

点击阅读全文...

24 Jul

神秘的圆——三角形的“六接圆”(添加新方法)

数联天地论坛中的watt5151朋友提出了这样的一个问题:

三角形的“六接圆”

三角形的“六接圆”

如图,已知三角形ABC,如何做一个圆,它与三角形三边都相交,而且六个交点可以连成三条直径?

点击阅读全文...

26 Jul

问世间质心(重心)知多少

均匀大圆挖去小圆后,求质心(重心)

均匀大圆挖去小圆后,求质心(重心)

不论在数学题目上,或者是物理应用中,我们总能够看到类似的题目:求一个规则物体挖去(或增加)一个规则物体后,其剩下部分的质心(重心)。

点击阅读全文...

17 Jun

从牛顿力学角度研究宇宙学

Universe_expansion

Universe_expansion

不少天文爱好者对宇宙学这方面的内容“听而生畏”,觉得没有爱因斯坦的广义相对论等复杂理论基础是不可理解的。的确,这种观点没有错,当前的宇宙学对宇宙的精确描述,的确是建立在广义相对论和量子力学等理论的基础之上的。BoJone也只是在书上略略浏览,根本谈不上有什么了解。但是,对于一般的天文爱好者来说,只要对牛顿力学和微积分有一定的了解,就可以对我们的宇宙有一个大概的描述,也能够得出很多令人惊喜的结论。相信进行了这项工作之后,很多爱好者都会改观:原来宇宙学也并不是那么难...并且能够得出这样的一个结论:广义相对论虽然对牛顿引力理论进行了彻底的改革,但是从数学的角度来讲,它仅仅对牛顿力学进行了修正。

点击阅读全文...

30 Jul

旋转的弹簧将如何伸长?

旋转的弹簧

旋转的弹簧

一根均匀的弹簧长度l

0

,线密度λ

0

,劲度系数k,总质量M。现在没有重力的环境下,绕其一端作角速度ω的旋转(角速度恒定),则此时其长度变为多少?

这是网友“宇宙为家”在几天前提出的问题。期间我曾做过多次解答,犯了若干次错误,经过修修补补,得出了最后的答案,在此感谢“宇宙为家”朋友的多次提醒。如果下面的答案依旧有错误,望各位读者发现并指出。

点击阅读全文...

9 Aug

三次方程求根器(VB程序+源码,“低手”拙作)

三次方程求根器-界面

三次方程求根器-界面

点击阅读全文...