17 Jun

OCR技术浅探:1. 全文简述

写在前面:前面的博文已经提过,在上个月我参加了第四届泰迪杯数据挖掘竞赛,做的是A题,跟OCR系统有些联系,还承诺过会把最终的结果开源。最近忙于毕业、搬东西,一直没空整理这些内容,现在抽空整理一下。

把结果发出来,并不是因为结果有多厉害、多先进(相反,当我对比了百度的这篇论文《基于深度学习的图像识别进展:百度的若干实践》之后,才发现论文的内容本质上还是传统那一套,远远还跟不上时代的潮流),而是因为虽然OCR技术可以说比较成熟了,但网络上根本就没有对OCR系统进行较为详细讲解的文章,而本文就权当补充这部分内容吧。我一直认为,技术应该要开源才能得到发展(当然,在中国这一点也确实值得商榷,因为开源很容易造成山寨),不管是数学物理研究还是数据挖掘,我大多数都会发表到博客中,与大家交流。

点击阅读全文...

26 Jun

OCR技术浅探:8. 综合评估

数据验证

尽管在测试环境下模型工作良好,但是实践是检验真理的唯一标准. 在本节中,我们通过自己的模型,与京东的测试数据进行比较验证.

衡量OCR系统的好坏有两部分内容:(1)是否成功地圈出了文字;(2)对于圈出来的文字,有没有成功识别. 我们采用评分的方法,对每一张图片的识别效果进行评分. 评分规则如下:

如果圈出的文字区域能够跟京东提供的检测样本的box文件中匹配,那么加1分,如果正确识别出文字来,另外加1分,最后每张图片的分数是前面总分除以文字总数.

按照这个规则,每张图片的评分最多是2分,最少是0分. 如果评分超过1,说明识别效果比较好了. 经过京东的测试数据比较,我们的模型平均评分大约是0.84,效果差强人意。

点击阅读全文...

18 Aug

【中文分词系列】 2. 基于切分的新词发现

上一篇文章讲的是基于词典和AC自动机的快速分词。基于词典的分词有一个明显的优点,就是便于维护,容易适应领域。如果迁移到新的领域,那么只需要添加对应的领域新词,就可以实现较好地分词。当然,好的、适应领域的词典是否容易获得,这还得具体情况具体分析。本文要讨论的就是新词发现这一部分的内容。

这部分内容在去年的文章《新词发现的信息熵方法与实现》已经讨论过了,算法是来源于matrix67的文章《互联网时代的社会语言学:基于SNS的文本数据挖掘》。在那篇文章中,主要利用了三个指标——频数、凝固度(取对数之后就是我们所说的互信息熵)、自由度(边界熵)——来判断一个片段是否成词。如果真的动手去实现过这个算法的话,那么会发现有一系列的难度。首先,为了得到$n$字词,就需要找出$1\sim n$字的切片,然后分别做计算,这对于$n$比较大时,是件痛苦的时间;其次,最最痛苦的事情是边界熵的计算,边界熵要对每一个片段就行分组统计,然后再计算,这个工作量的很大的。本文提供了一种方案,可以使得新词发现的计算量大大降低。

点击阅读全文...

5 Sep

进驻中山大学南校区,折腾校园网

开始研究僧之旅,希望有一天能企及扫地僧的境界。

进入中山大学后,各种郁闷的事情就来了。首先最郁闷的就是开学时间特早,8月26日开学,感觉至少比一般学校早了一星期,开学这么早有意思么~~接着就是感觉中大的管理制度各种混乱,比我本科的华师差多了。好吧,这些琐事先不吐槽,接下来弄校园网,这是作死的开始。

我们是在南校区的,校园网是通过锐捷客户端来认证的,而我是用macbook的,不过中大这边还很人性化地提供了Mac版的锐捷,体积就1M左右,挺好的。但众所周知,macbook并没有有线网卡,每次我上网都得插着个USB网卡然后连着网线,这该有多郁闷。于是想办法通过路由器拨号。我也不算没经验的了,对openwrt这个系统有过一定研究,以前在本科的时候也是锐捷,可以用mentohust替代拨号,很简单。于是我在这里重复这样的过程,发现一直认证失败,按照网上提示的各种方法,都无法解决。

经过研究,我发现在Windows下,这里就只能用官方提供了锐捷4.90版本,从其他地方下载的更高级或者更低级的锐捷,都无法通过验证。估计就是因为这个机制,导致了mentohust难以通过验证。而且网上流行的mentohust都是基于V2协议的,但4.90是基于V4的。后来我又去下载了V4版本的进行交叉编译,测试发现还不成功。几近绝望的时候,我发现了mentohust-proxy,一个mentohust的改进版,让我找到了希望。(怎么找到它?我是直接到github搜索了,因为实在没辙了~~)

原理很简单,如果直接通过mentohust无法完成认证,那么就通过代理模式,由电脑来完成认证,而mentohust只需要负责发送心跳包维持联网就行。这是个很折中的方案,但应该说是一个很通用的方案,因为它的成功与否,基本就取决于自己电脑的锐捷客户端而已。看到这个方案,我就知道有戏了,于是赶紧补习了一下交叉编译的知识,最后成功编译好了,并且在路由上成功地完成了认证。

点击阅读全文...

29 Nov

轻便的深度学习分词系统:NNCWS v0.1

好吧,我也做了一回标题党...其实本文的分词系统是一个三层的神经网络模型,因此只是“浅度学习”,写深度学习是显得更有吸引力。NNCWS的意思是Neutral Network based Chinese Segment System,基于神经网络的中文分词系统,Python写的,目前完全公开,读者可以试用。

闲话多说

这个程序有什么特色?几乎没有!本文就是用神经网络结合字向量实现了一个ngrams形式(程序中使用了7-grams)的分词系统,没有像《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》那样使用了高端的模型,也没有像《【中文分词系列】 5. 基于语言模型的无监督分词》那样可以无监督训练,这里纯粹是一个有监督的简单模型,训练语料是2014年人民日报标注语料。

点击阅读全文...

19 Nov

更别致的词向量模型(四):模型的求解

损失函数

现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。最大的问题是参数$b_i,\hat{b}_j$也是可训练的,这使得模型是严重不适定的!我们有
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)

互信息估算

点击阅读全文...

16 Mar

现在可以用Keras玩中文GPT2了(GPT2_ML)

前段时间留意到有大牛开源了一个中文的GPT2模型,是最大的15亿参数规模的,看作者给的demo,生成效果还是蛮惊艳的,就想着加载到自己的bert4keras来玩玩。不过早期的bert4keras整体架构写得比较“死”,集成多个不同的模型很不方便。前两周终于看不下去了,把bert4keras的整体结构重写了一遍,现在的bert4keras总能算比较灵活地编写各种Transformer结构的模型了,比如GPT2T5等都已经集成在里边了。

GPT2科普

GPT,相信很多读者都听说过它了,简单来说,它就是一个基于Transformer结构的语言模型,源自论文《GPT:Improving Language Understanding by Generative Pre-Training》,但它又不是为了做语言模型而生,它是通过语言模型来预训练自身,然后在下游任务微调,提高下游任务的表现。它是“Transformer + 预训练 + 微调”这种模式的先驱者,相对而言,BERT都算是它的“后辈”,而GPT2,则是GPT的升级版——模型更大,训练数据更多——模型最大版的参数量达到了15亿。

点击阅读全文...

5 Dec

万能的seq2seq:基于seq2seq的阅读理解问答

今天给bert4keras新增加了一个例子:阅读理解式问答(task_reading_comprehension_by_seq2seq.py),语料跟之前一样,都是用WebQA和SogouQA,最终的得分在0.77左右(单模型,没精调)。

用seq2seq做阅读理解的模型图示

用seq2seq做阅读理解的模型图示

方法简述

由于这次主要目的是给bert4keras增加demo,因此效率就不是主要关心的目标了。这次的目标主要是通用性和易用性,所以用了最万能的方案——seq2seq来实现做阅读理解。

用seq2seq做的话,基本不用怎么关心模型设计,只要把篇章和问题拼接起来,然后预测答案就行了。此外,seq2seq的方案还自然地包括了判断篇章有无答案的方法,以及自然地导出一种多篇章投票的思路。总而言之,不考虑效率的话,seq2seq做阅读理解是一种相当优雅的方案。

这次实现seq2seq还是用UNILM的方案,如果还不了解的读者,可以先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》了解相应内容。

点击阅读全文...