27 Sep

数学基本技艺之23、24(下)

在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。

一、特殊拟齐次微分方程的通解

在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$

点击阅读全文...

29 Oct

求解微分方程的李对称方法(一)

马里乌斯·索菲斯·李

马里乌斯·索菲斯·李

在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》

李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。

点击阅读全文...

8 Nov

力学系统及其对偶性(一)

写在前头

经过两年多的开发,本站所用的Typecho终于发布了新版,虽然还是beta,但是我还是迫不及待地升级了。当然,前台并没有变化,但是几乎整个程序都是重构了的,后台也更加清爽了。本文是新版程度的第一篇文章,使用Markdowm语法编写。

----------

牛顿Vs胡克

在所有的力学系统中,最简单的或许就是简谐运动了。它由一个最简单的常系数线性微分方程组描述:
$$\ddot{\boldsymbol{x}}+\omega^2 \boldsymbol{x}=0$$

这也就是物体在弹性形变的胡克定律所描述的力的作用下的运动情况。我们可以很快用三角函数写出该方程的精确解。相比之下,二体问题的解就复杂多了,虽然二体问题也是精确可解的,但是显然没有简谐运动那样简单明了。然而,除了都是有心力之外,它们之间还有一个共同点,它们的运动轨道都是椭圆!(严格来说是圆锥曲线,因为还可能有抛物线跟双曲线,但是不失一般性,本文只分析椭圆轨道)两者之间是否存在着某种联系呢?如果可以将二体问题转变为简谐运动,那么分析过程应该可以大大化简了?

点击阅读全文...

14 Nov

力学系统及其对偶性(二)

如果仅仅从牛顿第二定律的角度来进行变换推导,那么关于力学定律的对偶性的结果无疑仅仅是初等的。对于理论分析来说,更方便的是从做小作用量原理的形式出发,事实上,这种形式计算量也是很少的,甚至比直接代入运动方程变换更加便捷。

上一篇文章中我们讲到,变换$z \mapsto z^2$将一个原点为几何中心的椭圆映射为一个原点为焦点的椭圆,并且相信这种变换可以将胡克定律跟牛顿万有引力定律联系起来。然后就立即给出了变换$w=z^2,d\tau=|z^2|dt$。但是这个变换本身并不显然的,假如我们仅仅发现了$z \mapsto z^2$的几何意义,如何相应地得出$d\tau=|z^2|dt$这个变换呢?本文初步地解决这个问题。

几何作用量

让我们回顾力学的最小作用量原理:
$$ S = \int_{{t_1}}^{{t_2}} L dt = \int_{{t_1}}^{{t_2}} {(T - U)} dt $$

点击阅读全文...

15 Nov

力学系统及其对偶性(三)

在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。

变分中的变量代换

考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$

点击阅读全文...

5 Dec

三角函数幂的定积分

最近的我的主要学习是在研究路径积分,在推导路径积分的一种新的变换方法(或者是一个新的视角吧),但是有道坎还是迈不过去,因此blog中也一直更新寥寥。说到积分与微分,这两个本是互逆的东西,但是在复数的统一之下,它们两个去可以相互转化。比如说,薛定谔方程是量子力学的微分形式,而路径积分实际上可以说是量子力学的积分形式,这让我有些想法,是不是任何微分形式的数学都存在一个积分形式的版本呢?如果是,是微分版本优还是积分版本优?

在数学分析中,我们会感觉到求导会比求积分容易很多,求导有现成的公式等等。但是微分有个最大的缺点,它是多分量的,比如,势函数是一个标量,但是微分(求梯度)之后就变成了三分量的矢量(即作用力),多分量事实上是不好处理了,为了处理这类问题,又引入了大量的算符。积分的特点在于它的标量性,也许计算很复杂,但是思想确实容易把握的,我更喜欢积分形式的理论(比如作用量原理、路径积分等。)

说到数学分析中常见而又著名的定积分,不得不提到以下三角函数积分了。
$$\int_0^{\pi/2} \sin^{2n} \theta d\theta$$
不难证明,它也等于
$$\int_0^{\pi/2} \cos^{2n} \theta d\theta$$

点击阅读全文...

26 Dec

小论文《欧拉数学在数列级数的妙用》

这是我的数学分析期末小论文,是之前的文章《[欧拉数学]找出严谨的答案》的补充与完善,也是我自己的Latex写作练习。文章举了一些例子来说明通过离散数学连续化为离散命题的证明带来思路。

----------------------

通常我们都认为具体的级数是比较容易分析的,而抽象级数则比较难把握思路。抽象级数题目的种类太多,为了熟练解题通常都需要记忆很多形式,而且这些形式通常都很单一,缺乏可拓展性。而运用“欧拉数学”,可以为我们解决数项级数题提供一个独特的、实用性广的思路。

点击阅读全文...

26 Dec

高维空间的叉积及其几何意义

向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。

回顾三维空间

为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。

点击阅读全文...