29 Aug

三角半分正方形

印象中我在初一曾从一个美术生好朋友那里学到了一个画椭圆的方法:选取一个矩形,取一组邻边的中点,连接并切除得到的三角形;在剩下的五边形中,继续取邻边中点,连接,切除,得到一个如下图的图形;然后作一个尽可能与下图AG、GH、HI、IJ相切的弧,这个弧就大概为四分之一的椭圆了。

椭圆的美术画法

椭圆的美术画法

点击阅读全文...

2 Oct

[欧拉数学]素数有无穷多个的两个证明

素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^

一、欧几里得证明

这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。

点击阅读全文...

18 Nov

[欧拉数学]黎曼ζ函数

欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!

黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。

点击阅读全文...

19 Nov

[欧拉数学]素数倒数之和

上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门

接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理

无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!

点击阅读全文...

14 Jan

诡异的Dirac函数

量子力学中有一个很诡异的函数——Dirac函数,它似乎在物理的不少领域都有很大作用,它也具有明显的物理意义,但认真地看它却又感觉它根本就不是函数!这个“似而非是”的东西究竟是什么呢?让我们从一个物理问题引入:

设想一条质量为1,长度为$2l$的均匀直线,很显然直线的密度为$\rho=\frac{1}{2l}$;将直线的中点放置于坐标轴的原点,我们就有
$$\rho(x)=\left\{ \begin{array}{c}\frac{1}{2l} (-l \leq x \leq l)\\0 (x < -l , x > l)\end{array}\right.$$

所以有
$$\int_{-\infty}^{+\infty} \rho(x)dx=1$$

点击阅读全文...

9 Jun

高考结束了

轻轻地,它来了;悄悄地,它走了。似乎不带来一点东西,也没有留下一点痕迹,除了那珍贵的回忆。

仰望天空

仰望天空

06月07日、08日,两个一直以来于我而言都很神秘而神圣的日子,在前天、昨天和他们相遇了。一切来得那么不知不觉,似乎只有一瞬间,那传说中一个人生的转折点便过去了。然而,只有经历过才发现,它并没有那么神秘,它并没有那么令人颤抖,甚至,它只是很普通的一场测验而已。

点击阅读全文...

10 Jun

费曼积分法——积分符号内取微分(1)

帅气的天才科学家费曼

帅气的天才科学家费曼

似乎有好久都没有写文章感觉,高考结束了,继续研究。先总结一下考前的一些结果。

这个文章讲的是一个叫“积分符号内取微分”东西,这是一个很有趣而且有用的求定积分的方法。在这里我又擅自把它叫做“费曼积分法”,因为我是从费曼的自传《别闹了,费曼先生》中看到这种方法的。当然,费曼不是这个方法的首创者,他仅仅是是喜欢、熟练这种方法,并将它记载在了自传中。具体情况是怎样的呢?我先不多说,请读者直接看《别闹了,费曼先生》中的情节。

点击阅读全文...

12 Jun

费曼积分法——积分符号内取微分(2)

上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。

一般原理

我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$

在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$

点击阅读全文...