多任务学习漫谈(二):行梯度之事
By 苏剑林 | 2022-02-08 | 51412位读者 | 引用在《多任务学习漫谈(一):以损失之名》中,我们从损失函数的角度初步探讨了多任务学习问题,最终发现如果想要结果同时具有缩放不变性和平移不变性,那么用梯度的模长倒数作为任务的权重是一个比较简单的选择。我们继而分析了,该设计等价于将每个任务的梯度单独进行归一化后再相加,这意味着多任务的“战场”从损失函数转移到了梯度之上:看似在设计损失函数,实则在设计更好的梯度,所谓“以损失之名,行梯度之事”。
那么,更好的梯度有什么标准呢?如何设计出更好的梯度呢?本文我们就从梯度的视角来理解多任务学习,试图直接从设计梯度的思路出发构建多任务学习算法。
整体思路
我们知道,对于单任务学习,常用的优化方法就是梯度下降,那么它是怎么推导的呢?同样的思路能不能直接用于多任务学习呢?这便是这一节要回答的问题。
logsumexp运算的几个不等式
By 苏剑林 | 2022-05-10 | 22437位读者 | 引用$\text{logsumexp}$是机器学习经常遇到的运算,尤其是交叉熵的相关实现和推导中都会经常出现,同时它还是$\max$的光滑近似(参考《寻求一个光滑的最大值函数》)。设$x=(x_1,x_2,\cdots,x_n)$,$\text{logsumexp}$定义为
\begin{equation}\text{logsumexp}(x)=\log\sum_{i=1}^n e^{x_i}\end{equation}
本文来介绍$\text{logsumexp}$的几个在理论推导中可能用得到的不等式。
基本界
记$x_{\max} = \max(x_1,x_2,\cdots,x_n)$,那么显然有
\begin{equation}e^{x_{\max}} < \sum_{i=1}^n e^{x_i} \leq \sum_{i=1}^n e^{x_{\max}} = ne^{x_{\max}}\end{equation}
各端取对数即得
\begin{equation}x_{\max} < \text{logsumexp}(x) \leq x_{\max} + \log n\end{equation}
如何度量数据的稀疏程度?
By 苏剑林 | 2023-05-05 | 31390位读者 | 引用在机器学习中,我们经常会谈到稀疏性,比如我们经常说注意力矩阵通常是很稀疏的。然而,不知道大家发现没有,我们似乎从没有给出过度量稀疏程度的标准方法。也就是说,以往我们关于稀疏性的讨论,仅仅是直观层面的感觉,并没有过定量分析。那么问题来了,稀疏性的度量有标准方法了吗?
经过搜索,笔者发现确实是有一些可用的指标,比如$l_1/l_2$、熵等,但由于关注视角的不同,在稀疏性度量方面并没有标准答案。本文简单记录一下笔者的结果。
基本结果
狭义上来讲,“稀疏”就是指数据中有大量的零,所以最简单的稀疏性指标就是统计零的比例。但如果仅仅是这样的话,注意力矩阵就谈不上稀疏了,因为softmax出来的结果一定是正数。所以,有必要推广稀疏的概念。一个朴素的想法是统计绝对值不超过$\epsilon$的元素比例,但这个$\epsilon$怎么确定呢?
通向概率分布之路:盘点Softmax及其替代品
By 苏剑林 | 2024-06-14 | 26258位读者 | 引用不论是在基础的分类任务中,还是如今无处不在的注意力机制中,概率分布的构建都是一个关键步骤。具体来说,就是将一个$n$维的任意向量,转换为一个$n$元的离散型概率分布。众所周知,这个问题的标准答案是Softmax,它是指数归一化的形式,相对来说比较简单直观,同时也伴有很多优良性质,从而成为大部分场景下的“标配”。
尽管如此,Softmax在某些场景下也有一些不如人意之处,比如不够稀疏、无法绝对等于零等,因此很多替代品也应运而生。在这篇文章中,我们将简单总结一下Softmax的相关性质,并盘点和对比一下它的部分替代方案。
Softmax回顾
首先引入一些通用记号:$\boldsymbol{x} = (x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$是需要转为概率分布的$n$维向量,它的分量可正可负,也没有限定的上下界。$\Delta^{n-1}$定义为全体$n$元离散概率分布的集合,即
\begin{equation}\Delta^{n-1} = \left\{\boldsymbol{p}=(p_1,p_2,\cdots,p_n)\left|\, p_1,p_2,\cdots,p_n\geq 0,\sum_{i=1}^n p_i = 1\right.\right\}\end{equation}
之所以标注$n-1$而不是$n$,是因为约束$\sum\limits_{i=1}^n p_i = 1$定义了$n$维空间中的一个$n-1$维子平面,再加上$p_i\geq 0$的约束,$(p_1,p_2,\cdots,p_n)$的集合就只是该平面的一个子集,即实际维度只有$n-1$。
Softmax后传:寻找Top-K的光滑近似
By 苏剑林 | 2024-09-19 | 22850位读者 | 引用Softmax,顾名思义是“soft的max”,是$\max$算子(准确来说是$\text{argmax}$)的光滑近似,它通过指数归一化将任意向量$\boldsymbol{x}\in\mathbb{R}^n$转化为分量非负且和为1的新向量,并允许我们通过温度参数来调节它与$\text{argmax}$(的one hot形式)的近似程度。除了指数归一化外,我们此前在《通向概率分布之路:盘点Softmax及其替代品》也介绍过其他一些能实现相同效果的方案。
我们知道,最大值通常又称Top-1,它的光滑近似方案看起来已经相当成熟,那读者有没有思考过,一般的Top-$k$的光滑近似又是怎么样的呢?下面让我们一起来探讨一下这个问题。
问题描述
设向量$\boldsymbol{x}=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$,简单起见我们假设它们两两不相等,即$i\neq j \Leftrightarrow x_i\neq x_j$。记$\Omega_k(\boldsymbol{x})$为$\boldsymbol{x}$最大的$k$个分量的下标集合,即$|\Omega_k(\boldsymbol{x})|=k$以及$\forall i\in \Omega_k(\boldsymbol{x}), j \not\in \Omega_k(\boldsymbol{x})\Rightarrow x_i > x_j$。我们定义Top-$k$算子$\mathcal{T}_k$为$\mathbb{R}^n\mapsto\{0,1\}^n$的映射:
\begin{equation}
[\mathcal{T}_k(\boldsymbol{x})]_i = \left\{\begin{aligned}1,\,\, i\in \Omega_k(\boldsymbol{x}) \\ 0,\,\, i \not\in \Omega_k(\boldsymbol{x})\end{aligned}\right.
\end{equation}
说白了,如果$x_i$属于最大的$k$个元素之一,那么对应的位置变成1,否则变成0,最终结果是一个Multi-Hot向量,比如$\mathcal{T}_2([3,2,1,4]) = [1,0,0,1]$。
Keras中自定义复杂的loss函数
By 苏剑林 | 2017-07-22 | 433170位读者 | 引用Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架,以theano为后端,而如今Keras已经同时支持四种后端:theano、tensorflow、cntk、mxnet(前三种官方支持,mxnet还没整合到官方中),由此可见Keras的魅力。
Keras是很方便,然而这种方便不是没有代价的,最为人诟病之一的缺点就是灵活性较低,难以搭建一些复杂的模型。的确,Keras确实不是很适合搭建复杂的模型,但并非没有可能,而是搭建太复杂的模型所用的代码量,跟直接用tensorflow写也差不了多少。但不管怎么说,Keras其友好、方便的特性(比如那可爱的训练进度条),使得我们总有使用它的场景。这样,如何更灵活地定制Keras模型,就成为一个值得研究的课题了。这篇文章我们来关心自定义loss。
输入-输出设计
Keras的模型是函数式的,即有输入,也有输出,而loss即为预测值与真实值的某种误差函数。Keras本身也自带了很多loss函数,如mse、交叉熵等,直接调用即可。而要自定义loss,最自然的方法就是仿照Keras自带的loss进行改写。
用傅里叶级数拟合一维概率密度函数
By 苏剑林 | 2024-03-07 | 31636位读者 | 引用在《“闭门造车”之多模态思路浅谈(一):无损输入》中我们曾提到,图像生成的本质困难是没有一个连续型概率密度的万能拟合器。当然,也不能说完全没有,比如高斯混合模型(GMM)理论上就是可以拟合任意概率密度,就连GAN本质上也可以理解为混合了无限个高斯模型的GMM。然而,GMM尽管理论上的能力是足够的,但它的最大似然估计会很困难,尤其是通常不适用基于梯度的优化器,这限制了它的使用场景。
近日,Google的一篇新论文《Fourier Basis Density Model》针对一维情形,提出了一个新的解决方案——用傅里叶级数来拟合。论文的分析过程颇为有趣,构造形式也很是巧妙,值得学习一番。
问题简述
可能有读者质疑:只研究一维情形有什么价值?确实,如果只考虑图像生成场景,那可能真的价值有限,但一维概率密度估计本身有它的应用价值,如数据的有损压缩,所以它依然是一个值得研究的主题。再者,即便我们需要研究多维的概率密度,也可以通过自回归的方式转化为多个一维的条件概率密度来估计。最后,这个分析和构造过程本身就很值得回味,所以哪怕是仅仅作为一道数学分析题来练习也是相当有益的。
最近评论