BoJone在之前的《自然极值》系列已经花了一定篇幅来讲述“极值”在自然界中是多么的普遍,它能够引导我们进行某些问题的思考,从而获得简单快捷的解答。接下来,我要说的一个更加令人惊讶的“事实”:“极值”不仅仅在某些数学或物理问题上给予我们创造性的思考,它甚至构建了整个经典力学乃至于整个物理学!这不是夸大其辞,这是物理学中被称为“最小作用量原理”的一个原理,很多物理学家(如费恩曼)被它深深吸引着,甚至认为它就是“上帝创造世界的终极公式”!(关于做小作用量原理,大家不妨看一下范翔所写的《最小作用量原理与物理之美》系列文章)
话说在18世纪,欧拉和拉格朗日开创了一条独特的道路,即用变分法来研究经典力学,从而使经典力学焕发出了新的活力,也由此衍生出了一个叫“理论力学”或“分析力学”的分支。用变分法研究力学有很多的好处,变分的对象一般都是标量函数,我们只需要写出动力系统的动能与势能表达式,就可以进行一系列的研究,比如列出质点的运动方程、判断平衡点的稳定性、求周期轨道等等(由于BoJone对理论力学研究还不够深入,无法举太多例子,但请相信,其作用远远不止这些),省去了不少繁琐的矢量性分析,这些都是在变分法发明前难以研究的。
重提“旋转弹簧伸长”问题(变分解法)
By 苏剑林 | 2011-04-05 | 20082位读者 | 引用感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》
在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/
今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。
《教材如何写》:BoJone的粗浅看法
By 苏剑林 | 2011-04-19 | 21278位读者 | 引用在科学空间所转载的上两篇文章中,matrix67和范翔都表达了他们对大多数现行(数学&物理)教材的不满和对编写教材的一些建议。今天,BoJone也来发发牢骚,说说教材。
首先得说明下,目前BoJone只是一个高二生,或者说,是一个爱好数学、物理的高中生,因此本文所描写的观点仅仅是个人的看法,而且应该带有诸多的不成熟看法。不论如何,谨在此提出,欢迎讨论。
BoJone认为,人类都有着追求利益的倾向,要是一样东西能够对我们有“好处”,给我们带来方便,那么我们就很乐意去拥有它,或者去学习它。数学、物理理论也应当如此,当教材编写者想要引入一个新概念或介绍一个新理论、方法时,首先要做的并不是如何从严格上定义、推导、证明、最后才去应用,而相反,他们应该要大书特书引入新概念和方法后有什么“好处”。只有了解到了它的用处之后,读者才会有明确的目的和足够的心思去进一步的学习。这一步对于一些抽象的理论的学习是很重要的,要不然,那么繁琐、枯燥的推理证明过程会抹杀掉绝大多数人的信心,纵使后来“终于”弄懂了它的用处,也兴趣倍减。说到这里,就不得不批评一下人教版数学选修教材中的一个很让人反感的做法,在《选修2-2》中它引入了复数,但仅仅简单交待了复数的加减乘除运算和模等定义后就了事,对于复数的一些精华,比如复数乘法代表着坐标旋转等,则全然不提,这样的“复数”有何意义呢?有同学问我:“学复数有什么用?”我只能回答:“就目前来说,复数的唯一作用就是增加了我们高考的负担。”
看完了刘亦菲版《倩女幽魂》
By 苏剑林 | 2011-04-23 | 31373位读者 | 引用自《仙剑奇侠传1》开始,BoJone一直都有追看刘亦菲和胡歌的影视作品,尤其是古装片。胡歌版的《神雕英雄传》、《仙剑奇侠传3》连续剧分别只花了4天时间就把它们看完了(有点狂...),还有他的《神话》等。至于刘亦菲,在我的印象里她这两年没有拍过古装片了,上一部好像就是《功夫之王》了,不过这部电影我不大喜欢(有点看不懂...)。不过刘亦菲的几部古装连续剧,如《神雕侠侣》、《天龙八部》还有《仙剑奇侠传1》中的“神仙姐姐”形象颇让人深刻,也许这正是她的清纯气质吧。
我记得去年就在广州日报上看到新版《倩女幽魂》的拍摄消息了,一直都有关注其拍摄进度。好像是在本月初就定下4月22日公映了,但事实上提前公映了。据说影迷本对这部影片不抱太大希望,但是上映后人们大都改观了,好评很多,票房也一路飙升。
其实BoJone是不懂得去欣赏一部电影的。只要影片中的情节不是特别地烂,我都觉得影片不错。看了这句话,一些资深影迷基本可以忽略我了,因为本文几乎没有什么可参考的价值。^_^
我们经常听说牛顿力学、相对论力学、量子力学等物理名词,也不时会听到“理论力学”。其实,“理论力学”这个名词是不大妥当的,因为这很容易会让人误认为这是一种新的力学体系。而事实上,理论力学并不是像牛顿力学那样是一种力学体系,而是一种研究力学的方法,而研究的对象在多数情况下依然是经典力学(翻开任意一本《理论力学》教程都不难发现这一点)。简单来讲,它把牛顿时代用微积分来研究力学的方法转变为了“变分”,变“常微分”为“偏微分”。看上去这有点“化简为繁”,但事实上这样的一个转变却带来了力学研究的一个巨大的飞跃。
说到这里,也许有的读者会感到害怕了:这里边肯定又涉及了各种高深莫测的高等数学方法,我们只能望而却步。的确,理论力学中的方法很是深奥,纵使是一个优秀的大学数理本科生,也可能要花上一年多时间才能学完一本《理论力学》。可是,通过最小作用量原理的方法去研究物理又显得如此地诱人。难道像我们这些初级人士就无法亲身体验理论力学方法给我们带来的巨大便利和不一样的体验了吗?
本月的天象预报暂停...
By 苏剑林 | 2011-05-07 | 15195位读者 | 引用地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 60819位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
只要我们曾经拥有过——《萍聚》
By 苏剑林 | 2011-06-06 | 21791位读者 | 引用这首歌是凤儿介绍的,去年我们学校高一夏令营的“主题歌曲”。她说歌词写得很好,我感觉也挺不错的^_^
萍,指的是漂浮在水面上的一种藻类,风吹过来,它们就会在风的作用力下聚在一起。人好象是浮在水面上的荷叶,聚散不过都是风吹动所致,到处飘散而已。因此便有了“萍水相逢”这一成语,指的是无心的邂逅或偶然的相遇。“萍聚”亦然。
曾有宋词写道“风中柳絮水中萍,聚散两无情”,这便让我们倍感人生悲欢离合的无奈。在这个充斥着高考的离别的六月里,离愁味道更浓了。可是,不论如何,明天的事情与我们无关,我们要珍惜今天事,珍惜今天人,尽我所能把握好我所拥有的。正如——
Cherish someone special for you and let them know you cherish them.
这样,当我们真的面临无可奈何的离别时,也能够含泪而微笑地挥手,唱着“只要我们曾经拥有过...”。这就是《萍聚》的声音!
最近评论