薛定谔方程的启发式推导
By 苏剑林 | 2012-12-11 | 67723位读者 | 引用===聊聊天===
上个月在网上买了三本相对论教材和一本《量子力学概论》,本打算好好研究下相对论的数学体系,可是书到了之后,我却深深地被量子力学吸引住了,不停在研读。而且在研究量子力学的同时,我的线性代数和微分方程知识也增加了不少,这确实是我没有想到的。在我看来,不管是狭义相对论还是广义相对论,它本质上都是一种几何理论,你总要想象从一个参考系观测会发生什么,然后从另外一个参考系又会看到什么;而量子力学虽然对我来讲一切都是新鲜的,但是它的数学性比较强,主要是微分方程的求解和理解。我想这也是我对量子力学更感兴趣的原因吧,因为我善于代数而不善于几何。
量子力学中让我最神往的内容莫过于费曼所发明的路径积分形式。资料记载费曼用他发明的方法在一个晚上就算出了别人几个月才算出来的结果,可见路径积分形式的优越性。当然,我也清楚,这个路径积分并不简单,它涉及到了泛函积分这一非常高深的内容,对于我这个连数学分析都还没有学好的小孩来说,泛函是难以触摸的。不过,我还是尽量想办法向它靠近。为此,我还浏览到了一些不少让人兴奋的内容,比如薛定谔的方程的推导、力学-光学类比、雅可比方程等等。
很遗憾,在正统的量子力学教材中,这些让我很兴奋的内容却鲜有涉及,有的话大多数都是一笔带过的感觉。多数量子力学不会讲到路径积分,就算有也只是作为附录。对于薛定谔方程的推导,也没有涉及到。这也让我养成了一个习惯意识:书本最有趣的东西往往都是在附录。所以对于教科书,那么写得正正式式的内容我一概没有兴趣,那些附录内容才是我最喜欢读的。可是,那些让人兴奋的内容却不一定是很难的,就像下面的薛定谔方程的启发式推导,它不仅不难,而且易于理解。
===薛定谔方程===
在量子力学诞生之前,科学家已经通过实验发现光既有波动性也有粒子性,而德布罗意提出也同时具有波动性和粒子性,这些都奠定了量子力学的基础。根据量子论,一个光子的能量可以由$E=h\nu=\hbar (2\pi \nu)$,其中$\nu$是频率,$\hbar=\frac{h}{2\pi}$,h是普朗克常数,习惯记$\omega=2\pi \nu$,即$E=\hbar \omega$。
费曼路径积分思想的发展(三)
By 苏剑林 | 2012-12-27 | 20082位读者 | 引用3、费曼图和量子电动力学的重整化
在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:
$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$
费曼路径积分思想的发展(四)
By 苏剑林 | 2012-12-27 | 38288位读者 | 引用4、量子场论中的泛函方法
路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。
费曼路径积分思想的发展(二)
By 苏剑林 | 2012-12-26 | 25013位读者 | 引用2、量子力学中的作用量量子化方法
在发现经典电动力学的这个新作用量之后,费曼便试图将它量子化,以期得到一个令人满意的量子电动力学。当时,量子物理学中还没有采用作用量方法。常规的途径是从哈密顿函数开始,用算符来取代经典哈密顿函数中的位置和动量,再应用非对易关系。费曼当时还不知道,狄拉克在1932年的一篇文章中已经将作用量和拉格朗日函数引进了量子力学[9]。正当他百思不得其解时,一位在普林斯頓访问的欧洲学者吿诉他,狄拉克在某某文章中讨论过这一间题。得知此信息后,费曼次日即去图书馆翻阅此文。
狄拉克在1932年的文章中引进了一个非常重要的函数$ < q_{t+dt}|q_t > $,并指出它“相当于” $\exp[\frac{i}{\hbar}Ldt]$[9]。这“意味着”,狄拉克强调:“我们不应该把经典的拉格朗日函数看成是坐标和速度的函数,而应把它看作两个不同时刻t和r+dt的坐标的函数。"[9]在狄拉克思想的启发之下,费曼径直把“相当于”改写为“正比于”:
轻微的扰动——摄动法简介(1)
By 苏剑林 | 2013-01-16 | 46765位读者 | 引用为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。
其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。
摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:
一、求解方程:$\varepsilon x^3+x^2=p^2$
关于“平衡态公理”的更正与思考
By 苏剑林 | 2013-02-03 | 20024位读者 | 引用在《自然极值》系列文章中,我引用了《数学方法论与解题研究》(张雄,李得虎编著)中提到的“平衡态公理”,并用它来解决了一些数学物理问题。平衡态公理讲的是系统的平衡状态总是在势能取极(小)值时取到,简单来讲就是自然界总向势能更低的方向发展,比如“水往低处流”。这在经典力学中本身是没有任何问题的,但在有些时候,我们在应用的时候可能会不自觉地将它想象成为“系统的平衡状态总是在总能量取极(小)值时取到”。然而,这却是不正确的。本文就是要探讨这个问题。
先来看看平衡态公理的来源。从最小作用量原理出发,考虑保守系统,每一个系统都应该对应着一个取极值的作用量S:
$$S=\int_{t_1}^{t_2} L(x,\dot{x})dt$$
这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。
相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。
16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。
《虚拟的实在(1)》——为什么需要场?
By 苏剑林 | 2013-05-24 | 38849位读者 | 引用这段时间我接触的物理学都是场论,从各种方面为广义相对论奠基。自我感觉,我的数学基础还算可以的,但是物理“底蕴”就不够了,通常是能够把物理理论的数学描述看懂,但是对每一步的物理基础和来源却不甚了解,真是“数学有余而物理不足”呀。陶醉在场论的海洋一段时间之后,对场论也有了个大概的印象。但是有一个最基础的问题,直到今天我才算是得到了比较满意的解答——为什么要引入场?
在传统的牛顿力学中并没有“场”这一概念,比如天体力学我们只需要考虑天体之间的相互作用力就可以完美解决很多问题,根本不需要场。估计广大读者首次接触到“场”的概念是在高中学习电学的时候,那时教科书给我们带来了电场、场线等诸多诡异的概念。事实上就是如此,可以这样说,历史上“场”是为了电磁学而诞生的——法拉第首次引入的场线具有独特的魅力。
最近评论