在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。
也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。
首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$
还有势能:$U=-\frac{k \cos\theta}{r^2}$
相对论和量子力学的初探
By 苏剑林 | 2012-10-16 | 34827位读者 | 引用=====大学学习=====
上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。
没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。
算子与线性常微分方程(上)
By 苏剑林 | 2012-11-30 | 42812位读者 | 引用简介
最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。
线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。
一阶线性常微分方程
这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$
薛定谔方程的启发式推导
By 苏剑林 | 2012-12-11 | 69129位读者 | 引用===聊聊天===
上个月在网上买了三本相对论教材和一本《量子力学概论》,本打算好好研究下相对论的数学体系,可是书到了之后,我却深深地被量子力学吸引住了,不停在研读。而且在研究量子力学的同时,我的线性代数和微分方程知识也增加了不少,这确实是我没有想到的。在我看来,不管是狭义相对论还是广义相对论,它本质上都是一种几何理论,你总要想象从一个参考系观测会发生什么,然后从另外一个参考系又会看到什么;而量子力学虽然对我来讲一切都是新鲜的,但是它的数学性比较强,主要是微分方程的求解和理解。我想这也是我对量子力学更感兴趣的原因吧,因为我善于代数而不善于几何。
量子力学中让我最神往的内容莫过于费曼所发明的路径积分形式。资料记载费曼用他发明的方法在一个晚上就算出了别人几个月才算出来的结果,可见路径积分形式的优越性。当然,我也清楚,这个路径积分并不简单,它涉及到了泛函积分这一非常高深的内容,对于我这个连数学分析都还没有学好的小孩来说,泛函是难以触摸的。不过,我还是尽量想办法向它靠近。为此,我还浏览到了一些不少让人兴奋的内容,比如薛定谔的方程的推导、力学-光学类比、雅可比方程等等。
很遗憾,在正统的量子力学教材中,这些让我很兴奋的内容却鲜有涉及,有的话大多数都是一笔带过的感觉。多数量子力学不会讲到路径积分,就算有也只是作为附录。对于薛定谔方程的推导,也没有涉及到。这也让我养成了一个习惯意识:书本最有趣的东西往往都是在附录。所以对于教科书,那么写得正正式式的内容我一概没有兴趣,那些附录内容才是我最喜欢读的。可是,那些让人兴奋的内容却不一定是很难的,就像下面的薛定谔方程的启发式推导,它不仅不难,而且易于理解。
===薛定谔方程===
在量子力学诞生之前,科学家已经通过实验发现光既有波动性也有粒子性,而德布罗意提出也同时具有波动性和粒子性,这些都奠定了量子力学的基础。根据量子论,一个光子的能量可以由$E=h\nu=\hbar (2\pi \nu)$,其中$\nu$是频率,$\hbar=\frac{h}{2\pi}$,h是普朗克常数,习惯记$\omega=2\pi \nu$,即$E=\hbar \omega$。
费曼路径积分思想的发展(三)
By 苏剑林 | 2012-12-27 | 20556位读者 | 引用3、费曼图和量子电动力学的重整化
在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:
$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$
费曼路径积分思想的发展(四)
By 苏剑林 | 2012-12-27 | 39568位读者 | 引用4、量子场论中的泛函方法
路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。
费曼路径积分思想的发展(二)
By 苏剑林 | 2012-12-26 | 25494位读者 | 引用2、量子力学中的作用量量子化方法
在发现经典电动力学的这个新作用量之后,费曼便试图将它量子化,以期得到一个令人满意的量子电动力学。当时,量子物理学中还没有采用作用量方法。常规的途径是从哈密顿函数开始,用算符来取代经典哈密顿函数中的位置和动量,再应用非对易关系。费曼当时还不知道,狄拉克在1932年的一篇文章中已经将作用量和拉格朗日函数引进了量子力学[9]。正当他百思不得其解时,一位在普林斯頓访问的欧洲学者吿诉他,狄拉克在某某文章中讨论过这一间题。得知此信息后,费曼次日即去图书馆翻阅此文。
狄拉克在1932年的文章中引进了一个非常重要的函数$ < q_{t+dt}|q_t > $,并指出它“相当于” $\exp[\frac{i}{\hbar}Ldt]$[9]。这“意味着”,狄拉克强调:“我们不应该把经典的拉格朗日函数看成是坐标和速度的函数,而应把它看作两个不同时刻t和r+dt的坐标的函数。"[9]在狄拉克思想的启发之下,费曼径直把“相当于”改写为“正比于”:
轻微的扰动——摄动法简介(1)
By 苏剑林 | 2013-01-16 | 48333位读者 | 引用为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。
其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。
摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:
一、求解方程:$\varepsilon x^3+x^2=p^2$
最近评论