19 Jul

太阳中心的压强和温度

太阳

太阳

为了准备IOAA,同时也加深对天体物理的理解,所以就系统地学习一下天体物理学了。今天看到“太阳”这一章,并由此简单估算了一下太阳的中心压强和温度。

天体物理学给出了关于恒星结构的一些方程。假设存在一颗各项同性的球形恒星,则有
$\frac{dm(r)}{dr}=4\pi r^2 \rho(r)$————质量方程
其中m(r)是与恒星球心距离为r的一个球形区域内的总质量,$\rho(r)$是距离球心r处的物质的密度。我们也可以写成积分的形式
$$m(r)=\int_0^R 4\pi r^2 \rho(r)dr$$
其中R是恒星半径。这个方程的意思其实就是每一个壳层的质量叠加,所以就不详细推导了。

点击阅读全文...

29 Jul

R136a1,300倍太阳质量的怪兽星

原文链接:http://www.eso.org/public/news/eso1030/

译文来自:http://www.astronomy.com.cn/bbs/thread-141201-1-1.html

Stars Just Got Bigger 超大质量的巨星 A 300 Solar Mass Star Uncovered 发现超过300太阳质量的蓝超巨星

Using a combination of instruments on ESO’s Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters — millions of times more luminous than the Sun, losing weight through very powerful winds — may provide an answer to the question “how massive can stars be?”

借助于ESO的甚大望远镜(VLT),天文学家发现了创质量纪录的巨星——达300个太阳质量以上,是我们此前公认的(星族II)恒星质量上限——150个太阳的2倍。发现如此怪兽级恒星:光度是太阳的数百万倍,以极速恒星风迅速损失质量——由此产生了一个问题:恒星质量上限到底是多少?

点击阅读全文...

23 Aug

《向量》系列——4.天旋地转(向量,复数,极坐标)

坐标旋转

坐标旋转

如图,坐标(x,y)绕点(p,q)逆时针旋转θ角后得到坐标(x',y'),求x',y'关于x,y的表达式。

点击阅读全文...

6 Nov

警察捉贼,追牛问题,导弹跟踪

王二小的牛跑了,当他发现时,牛在他正南方300米。且一直向正西方向匀速的跑,王二小立即追牛,他不是朝着一个固定的方向,而是每时每刻都朝着牛的方向跑,且速度是牛速度的4/3倍。当他追上牛时王二小共跑了多远?

问题分析

米拉斯反潜导弹

米拉斯反潜导弹

咋看起来,追牛和导弹是风牛马不相及的两件事:一个是生活小事,一个是物理问题,怎么能够扯到一块呢?

回想一下平时警察抓小偷的过程。警察不是物理学家,不会也可不能先去研究小偷的逃走路线函数,然后设计最小追赶时间的路程吧?那么,在不能预知小偷逃跑路线的前提下,警察要怎样捉小偷呢?很简单,盯死他!是的,只要你以更快的速度,一直朝着他跑,总能够追到的。继续联想下:要想用导弹跟踪摧毁一首敌舰,不也是只能够采用这种方式吗?回看文章开始的“追牛问题”,本质上不是一样的吗?以下是上海交大提出的导弹跟踪问题:

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

13 Nov

意犹未尽——继续光学曲线

《为什么是抛物线?——聚光面研究》这篇文章里头,我们从光学性质出发,推导出了符合该光学性质的曲线为抛物线,同时我们也不禁感到了向量分析的美妙。也许有的读者会意犹未尽:圆锥曲线有三种,文章只介绍了一种。那好,在这篇文章里,我们就从另外两个光学性质出发,推导出符合这两个光学性质的曲线(椭圆、双曲线)。

(注:在下面的描述中,橙色加粗向量表示光线,曲线表示反射面。)

一、从一个点发出的光线经过曲线(面)反射后汇集到另外一个点上。

椭圆的光学性质

椭圆的光学性质

点击阅读全文...

28 Nov

《自然极值》系列——4.费马点问题

通过上面众多的文字描述,也许你还不大了解这两个原理有何美妙之处,也或者你已经迫不及待地想去应用它们却不知思路。为了不至于让大家产生“审美疲劳”,接下来我们将试图利用这两个原理对费马点问题进行探讨,看看原理究竟是怎么发挥作用的。运用的关键在于:如何通过适当的变换将其与光学或势能联系起来。

费马点问题

费马点问题

传统费马点问题是指在ΔABC中寻找点P,使得$AP+BP+CP$最小的问题;而广义的费马点则改成使$k_1 AP+k_2 BP+k_3 CP$最小。这是很具有现实意义的,是“在三个村庄之间建立一个中转站,如何才能使运送成为最低”之类的最优问题。我们将从光学和势能两个角度对这个问题进行探讨(也许有的读者已经阅读过了利用重力的原理来求解费马点,但是我想光学的方法依然会是你眼前一亮的。

点击阅读全文...

19 Dec

太阳系是稳定的吗?

Greg Laughlin 文 Shea 译
转载自科学松鼠会

当牛顿遇上“混沌”,行星的轨道会失控吗?

UnstableSS_Pendulum

UnstableSS_Pendulum

点击阅读全文...