开普勒方程求根器(继续VB,继续拙作..)
By 苏剑林 | 2010-08-09 | 29593位读者 | 引用“凌星时刻变化”技术搜寻外行星
By 苏剑林 | 2010-08-09 | 18713位读者 | 引用谈谈“民科”——兼谈如何推翻爱恩斯坦?
By 苏剑林 | 2010-08-11 | 145002位读者 | 引用民科,是“平民科学家”的简称,本来,无论怎么看,这个词都是一个褒义词,代表了一群默默进行科学研究的人,本来,我等天文爱好者都可以用上“民科”这一漂亮词语。然而,“得益于”某些民科(至少在中国是这样的)的狂妄自大,使得“民科”成为了另外一群人的代名词。他们他们从最基础的物理学比如牛顿力学开始,就和正统的物理学分道扬镳。他们使用的专业术语跟正统的物理学都不同。你说东,他说西,以致于民科和专业人士完全不能交流。还有一些民科从易经八卦这些所谓的哲学原理出发,提出一些自以为是的邪乎学说,完全不在物理学的轨道上。这一群人,仿佛自认为自己是救世主,他们就是崭新而又来源已久的新“民科”。由此看,民科和物理学之间存在一个无法沟通的真空。
今天我们都是舟曲人——举国哀悼舟曲遇难同胞
By 苏剑林 | 2010-08-14 | 22533位读者 | 引用与向量的渊源极深的四元数
By 苏剑林 | 2010-08-27 | 32224位读者 | 引用当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?
当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。
最近评论