最近的我的主要学习是在研究路径积分,在推导路径积分的一种新的变换方法(或者是一个新的视角吧),但是有道坎还是迈不过去,因此blog中也一直更新寥寥。说到积分与微分,这两个本是互逆的东西,但是在复数的统一之下,它们两个去可以相互转化。比如说,薛定谔方程是量子力学的微分形式,而路径积分实际上可以说是量子力学的积分形式,这让我有些想法,是不是任何微分形式的数学都存在一个积分形式的版本呢?如果是,是微分版本优还是积分版本优?
在数学分析中,我们会感觉到求导会比求积分容易很多,求导有现成的公式等等。但是微分有个最大的缺点,它是多分量的,比如,势函数是一个标量,但是微分(求梯度)之后就变成了三分量的矢量(即作用力),多分量事实上是不好处理了,为了处理这类问题,又引入了大量的算符。积分的特点在于它的标量性,也许计算很复杂,但是思想确实容易把握的,我更喜欢积分形式的理论(比如作用量原理、路径积分等。)
说到数学分析中常见而又著名的定积分,不得不提到以下三角函数积分了。
$$\int_0^{\pi/2} \sin^{2n} \theta d\theta$$
不难证明,它也等于
$$\int_0^{\pi/2} \cos^{2n} \theta d\theta$$
用二次方程判别式判断正定矩阵
By 苏剑林 | 2013-12-24 | 58926位读者 | 引用快要学期末了,不少学霸开始忙碌起来了。不过对非学霸的我来说,基本上每天都是一样的,希望把自己感兴趣的东西深入研究下去,因为我觉得,真正学会点有用的东西才是最重要的。数学分析和高等代数老师都要求写课程论文,我也写了我比较感兴趣的“欧拉数学”和“超复数研究”,之后会把这部分内容与大家分享。
虽然学期已经接近尾声了,但是我们的课程还没有上完。事实上,我们的新课一直上到十八周~随着考试的接近,我们的《高等代数》课程也已经要落幕了。最近在上的是二次型方面的内容,讲到正定二次型和正定矩阵。关于正定矩阵的判别,教科书上提供了两个判别方法,一个是基于定义的初等变换,另外一个就是主子式法。前者无可厚非,但是后者我似乎难以理解——它虽然是正确的,但是它很丑,计算量又大。我还没有想清楚主子式法到底有什么好的?在我看来,本文所探讨的基于二次方程判别式的方法才是简单、快捷的。
正定二次型
所谓正定二次型,就是关于n个变量$x_1,x_2,...,x_n$的二次齐次函数,只要$x_i$不全为0,它的值恒为正数。比如
$$2 x_1^2+x_2^2-2 x_1 x_2=x_1^2+(x_2-x_1)^2$$
这是一个比较简单的正定二次型,多元的还有
$$5 x_1^2+x_2^2+5 x_3^2+4 x_1 x_2-8 x_1 x_3-4 x_2 x_3$$
小论文《欧拉数学在数列级数的妙用》
By 苏剑林 | 2013-12-26 | 25176位读者 | 引用《新理解矩阵5》:体积=行列式
By 苏剑林 | 2013-12-25 | 48915位读者 | 引用在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。
一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。
高维空间的叉积及其几何意义
By 苏剑林 | 2013-12-26 | 59263位读者 | 引用向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。
回顾三维空间
为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。
写在2013年即将逝去之际
By 苏剑林 | 2013-12-31 | 24651位读者 | 引用2013年即将过去,而我的大二也即将过去一半了。这一学期广播台的事情忙了很多,数学物理的进展比想象中稍微缓了一些,主要的进步是在向量分析(场论)、路径积分和微分方程等方面。下学期开始分流了,我选择了非师,但事实上,我更喜欢师范类的课程,我选择非师的唯一原因是选择师范需要修教育学和心理学。幸好,我们创新班的自由度比较多,可以自由选择下学期的课程,我选择了六门数学课程:
1、常微分方程;
2、复变函数;
(这两门纯粹是凑学分的,我觉得他能讲的东西我都懂了,而我认为很重要的部分他不讲...)
3、数理统计;
(这门主要的想法是为路径积分以及统计力学奠基)
4、微分几何;
(主要是广义相对论的奠基,还有理论物理形式)
5、偏微分方程;
(第4、5都是大三的课程,我是去跟大三一起上的)
6、离散数学。
《费恩曼物理讲义》在线版
By 苏剑林 | 2013-12-28 | 39793位读者 | 引用不确定性原理的矩阵形式
By 苏剑林 | 2014-01-05 | 42208位读者 | 引用作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。
本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。
设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。
考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。
最近评论