数学基本技艺(A Mathematical Trivium)
By 苏剑林 | 2013-09-26 | 24472位读者 | 引用这是Arnold给物理系学生出的基础数学题。原文是Arnold于1991年,在Russian Math Surveys 46:1(1991),271-278上发的一篇文章,英文名叫 A mathematical trivium,这篇文章是有个前言的,用两页纸的内容吐槽了1991年的学生数学学得很烂,尤其是物理系的。文后附了100道数学题,号称是物理系学生的数学底线。
这是给物理系出的数学题,所以和一般的数学竞赛题目不同,没太多证明题,主要就是计算和解模型,而且还有不少近似估算的,带有明显的物理风格。虽然作者说这是物理系学生数学的底线,但即使对于数学系的学生来说,这些题目还是有不少难度的。网络也有一些题目的答案,但是都比较零散。在这里与大家分享一下题目。什么时候有时间了,或者刚好碰到类似的研究,我也会把题目做做,与各位分享。希望有兴趣的朋友做了之后也把答案与大家交流呀。
数学基本技艺之23、24(上)
By 苏剑林 | 2013-09-26 | 16531位读者 | 引用数学基本技艺之23、24(下)
By 苏剑林 | 2013-09-27 | 24655位读者 | 引用在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。
一、特殊拟齐次微分方程的通解
在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$
求解微分方程的李对称方法(一)
By 苏剑林 | 2013-10-29 | 27938位读者 | 引用在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》。
李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。
月底回家看彗星C/2012 S1 (ISON)
By 苏剑林 | 2013-11-01 | 23952位读者 | 引用今年的天象中的“重头戏”——C/2012 S1 (ISON)彗星将在月底闪亮登场!
先贴出来自scully.cfa.harvard.edu的数据:
Date TT R. A. (2000) Decl. Delta r Elong. Phase m1 m2
2013 11 24 14 45 42.7 -18 53 56 0.8693 0.3002 17.1 104.3 3.0
2013 11 25 15 01 27.3 -20 05 10 0.8819 0.2551 14.3 107.0 2.5
2013 11 26 15 18 04.6 -21 09 58 0.8998 0.2058 11.4 109.3 1.8
2013 11 27 15 35 58.3 -22 05 30 0.9244 0.1502 8.2 110.4 0.7
2013 11 28 15 56 28.2 -22 43 29 0.9594 0.0826 4.6 106.9 -1.3
2013 11 29 16 23 17.5 -19 52 57 0.9762 0.0322 1.8 107.7 -4.5
2013 11 30 16 21 22.4 -16 20 32 0.9125 0.1145 5.3 127.4 -0.2
2013 12 01 16 19 11.8 -13 59 07 0.8681 0.1757 8.1 128.1 1.2
2013 12 02 16 17 23.9 -11 56 02 0.8309 0.2281 10.6 127.3 2.0
2013 12 03 16 15 54.3 -10 00 54 0.7980 0.2754 13.0 126.1 2.5
力学系统及其对偶性(一)
By 苏剑林 | 2013-11-08 | 26314位读者 | 引用写在前头
经过两年多的开发,本站所用的Typecho终于发布了新版,虽然还是beta,但是我还是迫不及待地升级了。当然,前台并没有变化,但是几乎整个程序都是重构了的,后台也更加清爽了。本文是新版程度的第一篇文章,使用Markdowm语法编写。
----------
牛顿Vs胡克
在所有的力学系统中,最简单的或许就是简谐运动了。它由一个最简单的常系数线性微分方程组描述:
$$\ddot{\boldsymbol{x}}+\omega^2 \boldsymbol{x}=0$$
这也就是物体在弹性形变的胡克定律所描述的力的作用下的运动情况。我们可以很快用三角函数写出该方程的精确解。相比之下,二体问题的解就复杂多了,虽然二体问题也是精确可解的,但是显然没有简谐运动那样简单明了。然而,除了都是有心力之外,它们之间还有一个共同点,它们的运动轨道都是椭圆!(严格来说是圆锥曲线,因为还可能有抛物线跟双曲线,但是不失一般性,本文只分析椭圆轨道)两者之间是否存在着某种联系呢?如果可以将二体问题转变为简谐运动,那么分析过程应该可以大大化简了?
力学系统及其对偶性(二)
By 苏剑林 | 2013-11-14 | 18383位读者 | 引用如果仅仅从牛顿第二定律的角度来进行变换推导,那么关于力学定律的对偶性的结果无疑仅仅是初等的。对于理论分析来说,更方便的是从做小作用量原理的形式出发,事实上,这种形式计算量也是很少的,甚至比直接代入运动方程变换更加便捷。
上一篇文章中我们讲到,变换$z \mapsto z^2$将一个原点为几何中心的椭圆映射为一个原点为焦点的椭圆,并且相信这种变换可以将胡克定律跟牛顿万有引力定律联系起来。然后就立即给出了变换$w=z^2,d\tau=|z^2|dt$。但是这个变换本身并不显然的,假如我们仅仅发现了$z \mapsto z^2$的几何意义,如何相应地得出$d\tau=|z^2|dt$这个变换呢?本文初步地解决这个问题。
几何作用量
让我们回顾力学的最小作用量原理:
$$ S = \int_{{t_1}}^{{t_2}} L dt = \int_{{t_1}}^{{t_2}} {(T - U)} dt $$
力学系统及其对偶性(三)
By 苏剑林 | 2013-11-15 | 17625位读者 | 引用在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。
变分中的变量代换
考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$
最近评论