4 Nov

《新理解矩阵3》:行列式的点滴

本文的最新版本位于:http://kexue.fm/archives/2208/

亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。

大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。

行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:

这个$n$阶矩阵的$n$个列向量根本就构不成一个$n$维空间的坐标系。

点击阅读全文...

6 Nov

王骁威:勇敢的追梦者

破解数学猜想

王骁威

王骁威

今天在看《广州日报》时,偶然发现了一个不曾听闻的名字——王骁威。

他,跟我一样是一个90后,是韶关学院的大四学生,而现在,他多了一点名头:“仅用1表示数问题中的素数猜想”这一难题的破解者。

“仅用1表示数问题中的素数猜想”出现在加拿大数学家Richard K·Guy的著作《数论中未解决的问题》中,是上世纪50年代,加拿大数学家Richard K·Guy提出一个数论猜想:对于给定的素数p,$f(p)=f(p-1)+1$是否能成立。其中,“仅用1表示数”指的是只用1通过加法和乘法以及括号来表示自然数,对于给定的自然数n,用1来表示时,1的最少个数记为$f(n)$。据说在之前就有诸多数学家论证过,在3亿之前的素数里,上述猜想是成立的。

但是王骁威通过举出反例证否了这个命题,他指出p=353942783时这个公式并不成立。他是经过四个月的钻研,王骁威运用集合论的运算、分析、优化,才成功发现这个猜想的反例的。发现反例之后,王骁威陷入兴奋,把整理成的报告寄给国内几家杂志社,结果却令他失望,几家杂志社对他的论文均不感兴趣。“我也怀疑过自己的努力是否值得,但对数学的强烈兴趣让我坚持下来。”王骁威说自己将论文译成英文,英文名为《A counterexample to the prime conjecture of expressing numbers using just ones》(中文名为《仅用1表示数中素数猜想的一个反例》),投往全球最权威的数论杂志———美国艾斯维尔出版社的《Journal of Number Theory》(数论杂志),国外专家的青睐终于让他收获成功的喜悦,论文发表在杂志第133期(明年二月)上。数学大师丘成桐也通过邮件与王骁威交流,并对他表示肯定。

点击阅读全文...

11 Nov

《新理解矩阵4》:相似矩阵的那些事儿

这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:

“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

点击阅读全文...

16 Nov

天体力学巨匠——拉普拉斯

本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。

天体力学巨匠——拉普拉斯

天体力学巨匠——拉普拉斯

作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。

首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。

神秘的少年时期

由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。

点击阅读全文...

30 Nov

算子与线性常微分方程(上)

简介

最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。

线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。

一阶线性常微分方程

这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$

点击阅读全文...

2 Dec

相对运动的一道妙题!

这是在《200道物理学难题》中的第五道题,题目看起来没有什么特色,但是解法却非常巧妙:

四只蜗牛在做匀速直线运动(速度各不同),它们的运动轨迹是两两相交的直线,但是没有三条直线交于一点,也就是说他们的轨迹有六个交点。在它们之间,已经发生了五次相遇,问第六次相遇是否一定发生?换句话说,有没有可能只发生五次相遇的?

点击阅读全文...

11 Dec

薛定谔方程的启发式推导

===聊聊天===

上个月在网上买了三本相对论教材和一本《量子力学概论》,本打算好好研究下相对论的数学体系,可是书到了之后,我却深深地被量子力学吸引住了,不停在研读。而且在研究量子力学的同时,我的线性代数和微分方程知识也增加了不少,这确实是我没有想到的。在我看来,不管是狭义相对论还是广义相对论,它本质上都是一种几何理论,你总要想象从一个参考系观测会发生什么,然后从另外一个参考系又会看到什么;而量子力学虽然对我来讲一切都是新鲜的,但是它的数学性比较强,主要是微分方程的求解和理解。我想这也是我对量子力学更感兴趣的原因吧,因为我善于代数而不善于几何。

量子力学中让我最神往的内容莫过于费曼所发明的路径积分形式。资料记载费曼用他发明的方法在一个晚上就算出了别人几个月才算出来的结果,可见路径积分形式的优越性。当然,我也清楚,这个路径积分并不简单,它涉及到了泛函积分这一非常高深的内容,对于我这个连数学分析都还没有学好的小孩来说,泛函是难以触摸的。不过,我还是尽量想办法向它靠近。为此,我还浏览到了一些不少让人兴奋的内容,比如薛定谔的方程的推导、力学-光学类比、雅可比方程等等。

很遗憾,在正统的量子力学教材中,这些让我很兴奋的内容却鲜有涉及,有的话大多数都是一笔带过的感觉。多数量子力学不会讲到路径积分,就算有也只是作为附录。对于薛定谔方程的推导,也没有涉及到。这也让我养成了一个习惯意识:书本最有趣的东西往往都是在附录。所以对于教科书,那么写得正正式式的内容我一概没有兴趣,那些附录内容才是我最喜欢读的。可是,那些让人兴奋的内容却不一定是很难的,就像下面的薛定谔方程的启发式推导,它不仅不难,而且易于理解。

===薛定谔方程===

在量子力学诞生之前,科学家已经通过实验发现光既有波动性也有粒子性,而德布罗意提出也同时具有波动性和粒子性,这些都奠定了量子力学的基础。根据量子论,一个光子的能量可以由$E=h\nu=\hbar (2\pi \nu)$,其中$\nu$是频率,$\hbar=\frac{h}{2\pi}$,h是普朗克常数,习惯记$\omega=2\pi \nu$,即$E=\hbar \omega$。

点击阅读全文...

30 Nov

算子与线性常微分方程(下)

不可交换

很自然会想到把这种方法延伸到变系数微分方程的求解,也许有读者回去自己摆弄了一下却总得不到合适的解而感到困惑。在这里群的非Abel性就体现出来了,首先用一个例子来说明一下,我们考虑算子的复合
$$(D-x)(D+x)=D^2-x^2+(Dx-xD)$$

我们要谨慎使用交换律,我们记$[P,Q]=PQ-QP$

其中P和Q是两个算子,此即量子力学中的“对易式”,用来衡量算子P和算子Q的可交换程度,当然,它本身也是一个算子。我们先来求出$[D,x]$给出了什么(要是它是0的话,那就表明运算可以交换了)。究竟它等于什么呢?直接看是看不出的,我们把它作用于一个函数:
$$[D,x]y=(Dx-xD)y=D(xy)-xDy=yDx+xDy-xDy=y$$

由于“近水楼台先得月”,所以$Dxy$表示x先作用于y,然后D再作用于(xy);而$xDy$表示D先作用于y,然后x再作用于Dy。最终我们得到了

点击阅读全文...