基于fine tune的图像分类(百度分狗竞赛)
By 苏剑林 | 2017-10-13 | 28262位读者 | 引用前两年百度的大数据竞赛都是自然语言处理方面的,今年画风一转,变成了图像的细颗粒度分类,赛题内容就是将宠物狗归为100类中的其中一类。这个任务本身是很平凡的,做法也很常规,无外乎就是数据扩增、imagenet模型的fine tune、模型集成三个方面。笔者并不擅长于模型集成,只做了前面两个步骤,成绩也非常一般(准确率80%上下)。但感觉里边的某些代码可能对读者有帮助,遂共享一翻。下面结合着代码来讲解。
比赛官网(随时有失效的可能):http://js.baidu.com
模型
模型主要用tensorflow+keras实现。首先自然是导入各种模块
#! -*- coding:utf-8 -*-
import numpy as np
from scipy import misc
import tensorflow as tf
from keras.applications.xception import Xception,preprocess_input
from keras.layers import Input,Dense,Lambda,Embedding
from keras.layers.merge import multiply
from keras import backend as K
from keras.models import Model
from keras.optimizers import SGD
from tqdm import tqdm
import glob
np.random.seed(2017)
tf.set_random_seed(2017)
训练集、验证集和测试集的意义
By 苏剑林 | 2017-10-14 | 49936位读者 | 引用更别致的词向量模型(三):描述相关的模型
By 苏剑林 | 2017-11-19 | 116450位读者 | 引用几何词向量
上述“月老”之云虽说只是幻想,但所面临的问题却是真实的。按照传统NLP的手段,我们可以统计任意两个词的共现频率以及每个词自身的频率,然后去算它们的相关度,从而得到一个“相关度矩阵”。然而正如前面所说,这个共现矩阵太庞大了,必须压缩降维,同时还要做数据平滑,给未出现的词对的相关度赋予一个合理的估值。
在已有的机器学习方案中,我们已经有一些对庞大的矩阵降维的经验了,比如SVD和pLSA,SVD是对任意矩阵的降维,而pLSA是对转移概率矩阵$P(j|i)$的降维,两者的思想是类似的,都是将一个大矩阵$\boldsymbol{A}$分解为两个小矩阵的乘积$\boldsymbol{A}\approx\boldsymbol{B}\boldsymbol{C}$,其中$\boldsymbol{B}$的行数等于$\boldsymbol{A}$的行数,$\boldsymbol{C}$的列数等于$\boldsymbol{A}$的列数,而它们本身的大小则远小于$\boldsymbol{A}$的大小。如果对$\boldsymbol{B},\boldsymbol{C}$不做约束,那么就是SVD;如果对$\boldsymbol{B},\boldsymbol{C}$做正定归一化约束,那就是pLSA。
但是如果是相关度矩阵,那么情况不大一样,它是正定的但不是归一的,我们需要为它设计一个新的压缩方案。借鉴矩阵分解的经验,我们可以设想把所有的词都放在$n$维空间中,也就是用$n$维空间中的一个向量来表示,并假设它们的相关度就是内积的某个函数(为什么是内积?因为矩阵乘法本身就是不断地做内积):
\[\frac{P(w_i,w_j)}{P(w_i)P(w_j)}=f\big(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle\big)\tag{8}\]
其中加粗的$\boldsymbol{v}_i, \boldsymbol{v}_j$表示词$w_i,w_j$对应的词向量。从几何的角度看,我们就是把词语放置到了$n$维空间中,用空间中的点来表示一个词。
因为几何给我们的感觉是直观的,而语义给我们的感觉是复杂的,因此,理想情况下我们希望能够通过几何关系来反映语义关系。下面我们就根据我们所希望的几何特性,来确定待定的函数$f$。事实上,glove词向量的那篇论文中做过类似的事情,很有启发性,但glove的推导实在是不怎么好看。请留意,这里的观点是新颖的——从我们希望的性质,来确定我们的模型,而不是反过来有了模型再推导性质。
机场-飞机+火车=火车站
更别致的词向量模型(四):模型的求解
By 苏剑林 | 2017-11-19 | 51438位读者 | 引用损失函数
现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)
互信息估算
果壳中的条件随机场(CRF In A Nutshell)
By 苏剑林 | 2017-11-25 | 111694位读者 | 引用本文希望用尽可能简短的语言把CRF(条件随机场,Conditional Random Field)的原理讲清楚,这里In A Nutshell在英文中其实有“导论”、“科普”等意思(霍金写过一本《果壳中的宇宙》,这里东施效颦一下)。
网上介绍CRF的文章,不管中文英文的,基本上都是先说一些概率图的概念,然后引入特征的指数公式,然后就说这是CRF。所谓“概率图”,只是一个形象理解的说法,然而如果原理上说不到点上,你说太多形象的比喻,反而让人糊里糊涂,以为你只是在装逼。(说到这里我又想怼一下了,求解神经网络,明明就是求一下梯度,然后迭代一下,这多好理解,偏偏还弄个装逼的名字叫“反向传播”,如果不说清楚它的本质是求导和迭代求解,一下子就说反向传播,有多少读者会懂?)
好了,废话说完了,来进入正题。
逐标签Softmax
CRF常见于序列标注相关的任务中。假如我们的模型输入为$Q$,输出目标是一个序列$a_1,a_2,\dots,a_n$,那么按照我们通常的建模逻辑,我们当然是希望目标序列的概率最大
$$P(a_1,a_2,\dots,a_n|Q)$$
不管用传统方法还是用深度学习方法,直接对完整的序列建模是比较艰难的,因此我们通常会使用一些假设来简化它,比如直接使用朴素假设,就得到
$$P(a_1,a_2,\dots,a_n|Q)=P(a_1|Q)P(a_2|Q)\dots P(a_n|Q)$$
《Attention is All You Need》浅读(简介+代码)
By 苏剑林 | 2018-01-06 | 864080位读者 | 引用2017年中,有两篇类似同时也是笔者非常欣赏的论文,分别是FaceBook的《Convolutional Sequence to Sequence Learning》和Google的《Attention is All You Need》,它们都算是Seq2Seq上的创新,本质上来说,都是抛弃了RNN结构来做Seq2Seq任务。
这篇博文中,笔者对《Attention is All You Need》做一点简单的分析。当然,这两篇论文本身就比较火,因此网上已经有很多解读了(不过很多解读都是直接翻译论文的,鲜有自己的理解),因此这里尽可能多自己的文字,尽量不重复网上各位大佬已经说过的内容。
序列编码
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列。这样一来,每个句子都对应的是一个矩阵$\boldsymbol{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_t)$,其中$\boldsymbol{x}_i$都代表着第$i$个词的词向量(行向量),维度为$d$维,故$\boldsymbol{X}\in \mathbb{R}^{n\times d}$。这样的话,问题就变成了编码这些序列了。
第一个基本的思路是RNN层,RNN的方案很简单,递归式进行:
\begin{equation}\boldsymbol{y}_t = f(\boldsymbol{y}_{t-1},\boldsymbol{x}_t)\end{equation}
不管是已经被广泛使用的LSTM、GRU还是最近的SRU,都并未脱离这个递归框架。RNN结构本身比较简单,也很适合序列建模,但RNN的明显缺点之一就是无法并行,因此速度较慢,这是递归的天然缺陷。另外我个人觉得RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程。
揭开迷雾,来一顿美味的Capsule盛宴
By 苏剑林 | 2018-01-23 | 437424位读者 | 引用由深度学习先驱Hinton开源的Capsule论文《Dynamic Routing Between Capsules》,无疑是去年深度学习界最热点的消息之一。得益于各种媒体的各种吹捧,Capsule被冠以了各种神秘的色彩,诸如“抛弃了梯度下降”、“推倒深度学习重来”等字眼层出不穷,但也有人觉得Capsule不外乎是一个新的炒作概念。
本文试图揭开让人迷惘的云雾,领悟Capsule背后的原理和魅力,品尝这一顿Capsule盛宴。同时,笔者补做了一个自己设计的实验,这个实验能比原论文的实验更有力说明Capsule的确产生效果了。
菜谱一览:
1、Capsule是什么?
2、Capsule为什么要这样做?
3、Capsule真的好吗?
4、我觉得Capsule怎样?
5、若干小菜。
再来一顿贺岁宴:从K-Means到Capsule
By 苏剑林 | 2018-02-12 | 220692位读者 | 引用在本文中,我们再次对Capsule进行一次分析。
整体上来看,Capsule算法的细节不是很复杂,对照着它的流程把Capsule用框架实现它基本是没问题的。所以,困难的问题是理解Capsule究竟做了什么,以及为什么要这样做,尤其是Dynamic Routing那几步。
为什么我要反复对Capsule进行分析?这并非单纯的“炒冷饭”,而是为了得到对Capsule原理的理解。众所周知,Capsule给人的感觉就是“有太多人为约定的内容”,没有一种“虽然我不懂,但我相信应该就是这样”的直观感受。我希望尽可能将Capsule的来龙去脉思考清楚,使我们能觉得Capsule是一个自然、流畅的模型,甚至对它举一反三。
在《揭开迷雾,来一顿美味的Capsule盛宴》中,笔者先分析了动态路由的结果,然后指出输出是输入的某种聚类,这个“从结果到原因”的过程多多少少有些望文生义的猜测成分;这次则反过来,直接确认输出是输入的聚类,然后反推动态路由应该是怎样的,其中含糊的成分大大减少。两篇文章之间有一定的互补作用。
最近评论