27 Aug

科学空间:2011年9月重要天象

秋高气爽的九月,天象剧场也逐渐热闹起来。秋分前后的夜晚,是一年中偶发流星出现最为频繁的时段。尤其是到了后半夜,如果赶上晴天,每小时看到二三十颗偶发流星都不成问题。与此同时,秋夜星空也不乏看点,美丽的仙女座星系M31肉眼可见,三角座星系M33等深空天体也是天文爱好者热衷的观测目标。除此之外,天王星将于本月迎来冲日,观测条件较好。

9月12日,我们又会迎来今年最重要的节日之一——中秋节。届时,不论您是身在他乡为“异客”,或是在家陪伴着亲人,BoJone都愿与你一起“举头望明月”。在此提前预祝大家中秋快乐、美满、团圆!

点击阅读全文...

21 Aug

有理直角三角形的面积能否为整数?

这是一个古老而有趣的问题,但在引入这个问题之前,我们首先来看一个简单的问题:

整数边直角三角形的面积能否为一个完全平方数?

答案是不能。我们可以举一些例子来检验一下,例如边长为3,4,5的直角三角形面积为6,6不是一个平方数;再如边长为5,12,13的直角三角形面积为30,30也不是一个平方数...当然,数学的最近目的是要求严格证明,而不是简单举例,否则就只得称为不完全归纳,这样得出来的是一个猜想,而不是“定理”,就好象著名的“哥德巴赫猜想”...本文我们将试图证明这个命题。

我们稍后还会发现,这个问题和以下问题是等价的:
是否存在一个面积为1的三边长都是有理数的直角三角形?

更让人意外的是,这个问题也等价于方程$x^4+y^4=z^4$并没有整数解,换句话说,我们要证明n=4时的“费马大定理”

点击阅读全文...

12 Sep

数学竞赛广东预赛|组成三角形的概率

九月三日BoJone和九个同学到云浮参加了今年广东省的数学竞赛预赛,那一起出发、玩笑、作战、吃饭的情景依然历历在目,让我久久不能忘怀。是呀,能够并肩作战的感觉真好!九日数学成绩出来了,遗憾的是今年政策改变了,我被告知整个市只有三个名额能够参加复赛,于是新兴只有我一个人进入了复赛(另外两个据说是罗定的,我们三个并列第一)。有点无语,我想,大概是要把那些为了功利而参赛的人都给刷下去吧...

今年广东的预赛题前所未有的简单,不论是和全国其他地方相比还是和上一年的题目相比,都简单了不少,但我还是做得不大理想,据我估计,120分的卷子我顶多能够拿个68分,所以BoJone的基本技能实在不容乐观。从云浮考试回来后,和同行的同学讨论试题,得出了一些很有趣的结果,那过程可谓其乐无穷呀!下面是倒数第二题预赛题的几个绝妙解法,供大家欣赏。解法由我和伍泽麒(人称“兔子、神兔”,人如其名,天资聪颖,性格可爱)完成。

题目:

在一条线段中随意选取两个点,把这条线段截成三段,求这三段线段能够组成一个三角形的概率。

点击阅读全文...

30 Sep

天宫一号成功发射!

昨晚九点十六分(据说准确时间是2011年9月29日21时16分03.507秒),天宫一号升空!

天宫一号发射

天宫一号发射

点击阅读全文...

2 Oct

[欧拉数学]素数有无穷多个的两个证明

素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^

一、欧几里得证明

这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。

点击阅读全文...

18 Nov

[欧拉数学]黎曼ζ函数

欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!

黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。

点击阅读全文...

19 Nov

[欧拉数学]素数定理及加强

1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$

这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$

点击阅读全文...

21 Jan

[问题解答]木杆平衡

昨天一个QQ好友让我帮忙解决一道物理题目:

长为L的均匀木杆重Q,在木杆上离A端L/4处放有一重为Q/2的重物,平衡时,木杆AB与水平面的夹角θ有多大?

木杆平衡

木杆平衡

看上去挺有趣的。于是我先记了下来,今天早上思考了一会儿,得出了下面的结果。其中我解答并没有直接受力分析,而是用了我们之前已经谈到过的“最小势能原理”:平衡系统中的势能必取极(小)值

点击阅读全文...