15 Oct

【理解黎曼几何】3. 测地线

测地线

黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。

几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。

因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。

平面上的测地线

平面上的测地线

有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。

点击阅读全文...

2 Nov

【理解黎曼几何】8. 处处皆几何 (力学几何化)

黎曼几何在广义相对论中的体现和应用,虽然不能说家喻户晓,但想必大部分读者都有所听闻。一谈到黎曼几何在物理学中的应用,估计大家的第一反应就是广义相对论。常见的观点是,广义相对论的发现大大推动了黎曼几何的发展。诚然,这是事实,然而,大多数人不知道的事,哪怕经典的牛顿力学中,也有黎曼几何的身影。

本文要谈及的内容,就是如何将力学几何化,从而使用黎曼几何的概念来描述它们。整个过程事实上是提供了一种框架,它可以将不少其他领域的理论纳入到黎曼几何体系中。

黎曼几何的出发点就是黎曼度量,通过黎曼度量可以通过变分得到测地线。从这个意义上来看,黎曼度量提供了一个变分原理。那反过来,一个变分原理,能不能提供一个黎曼度量呢?众所周知,不少学科的基础原理都可以归结为一个极值原理,而有了极值原理就不难导出变分原理(泛函极值),如物理中就有最小作用量原理、最小势能原理,概率论中有最大熵原理,等等。如果有一个将变分原理导出黎曼度量的方法,那么就可以用几何的方式来描述它。幸运的是,对于二次型的变分原理,是可以做到的。

点击阅读全文...

4 Nov

【外微分浅谈】1. 绪论与启发

写在前面

在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。

这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式

符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。

最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...

6 Nov

【外微分浅谈】5. 几何意义

对于前面所述的外微分,包括后面还略微涉及到的微分形式的积分,都是纯粹代数定义的内容,本身不具有任何的几何意义。但是,我们可以将某些公式或者定义,与一些几何内容对应起来,使我们更深刻地理解它,并且更灵活运用它。但是,它仅仅是一种对应,而且取决于我们的诠释。比如,我们说外微分公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy \tag{32} $$
对应于格林公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy \tag{33} $$
。这是没问题的,但它们并不等价,它们仅仅是形式上刚好一样。因为格林公式是描述闭合曲线的积分跟面积分的联系,而外微分的公式是一种纯粹的代数运算。因为你完全可以将$dx\land dy$对应于$-dxdy$而不是$dxdy$,这样就得到另外一种几何的对应。

更深刻的问题是:为什么恰好有这个对应?也就是说,为什么经过一些调整和诠释后,就能够得到与积分公式的对应?首先要明确的是外积与普通的数的乘积,除了反对称性之外,是没有任何区别的,因此不少性质得以保留;其次,还应该要回到反对称本身来考虑,矩阵的行列式代表着矩阵所对应的向量组张成的$n$维立体的体积,然而行列式是反对称的,这就意味着反对称运算跟体积、积分等有着先天的联系。当然,更细致的认识,笔者也还没做到。

此外,我们说寻求微分形式的几何意义,通常只是针对不超过3维的空间来讨论的,更高维的几何图像我们很难想象出来,尤其是高维的曲面积分,一般只是类比,但类比是否成立,有时还需要进一步商榷。因此,这种情况下,倒不如干脆点,说微分形式描述的东西就是几何,而不再去寻找所谓的几何意义了。也就是说,反过来,将微分形式和外微分作为公理式的第一性原理来定义几何。

甚至,你可以只将外微分当作是一种记忆各种微分、积分公式的有效途径,比如现在我要大家默写三维空间中的斯托克斯公式,大家估计会乱,因为不一定记得是哪个减哪个。但是在外微分框架下,可以很快地将它推导一遍。好比式$(11)$,如果非要寻求几何解释,那就是开普勒第二定律:单位时间内扫过的面积相等;然而没有几何解释,你依旧可以把方程解下去。

点击阅读全文...

24 Nov

科学空间“微信群|聊天机器人”上线测试

花了点时间,完成了一个微信的聊天机器人,并建立了微信群。

目前实现的功能如下:

1、搜索微信号spaces_ac_cn,添加为好友后,会自动给你发送加群邀请,你通过之后就可以加入到群聊中;
2、进群后自动发送欢迎信息;
3、记录群的聊天记录,定时分享给大家,以后大家就不担心有价值的群信息丢失了;
4、如果哪天群满了,则另开新群,一个群的信息,会自动同步到另外一个群,这样不至于冷落了某一个群;
5、如果你向微信号spaces_ac_cn发送消息,则自动在知乎搜索答案并返回,这还是一个简单的知乎搜索机器人。

还有一些管理员用到的功能,就不详细列出了。

欢迎大家加入!有问题请及时反馈,代码可能会有问题,因此希望大家多多测试。

29 Nov

轻便的深度学习分词系统:NNCWS v0.1

好吧,我也做了一回标题党...其实本文的分词系统是一个三层的神经网络模型,因此只是“浅度学习”,写深度学习是显得更有吸引力。NNCWS的意思是Neutral Network based Chinese Segment System,基于神经网络的中文分词系统,Python写的,目前完全公开,读者可以试用。

闲话多说

这个程序有什么特色?几乎没有!本文就是用神经网络结合字向量实现了一个ngrams形式(程序中使用了7-grams)的分词系统,没有像《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》那样使用了高端的模型,也没有像《【中文分词系列】 5. 基于语言模型的无监督分词》那样可以无监督训练,这里纯粹是一个有监督的简单模型,训练语料是2014年人民日报标注语料。

点击阅读全文...

1 Dec

基于双向GRU和语言模型的视角情感分析

前段时间参加了一个傻逼的网络比赛——基于视角的领域情感分析,主页在这里。比赛的任务是找出一段话的实体然后判断情感,比如“我喜欢本田,我不喜欢丰田”这句话中,要标出“本田”和“丰田”,并且站在本田的角度,情感是积极的,站在丰田的角度,情感就是消极的。也就是说,等价于将实体识别和情感分析结合起来了。

吐槽

看起来很高端,哪里傻逼了?比赛任务本身还不错,值得研究,然而官方却很傻逼,主要体现为:1、比赛分初赛、复赛、决赛三个阶段,初赛一个多月时间,然后筛选部分进入复赛,复赛就简单换了一点数据,题目、数据的领域都没有变化,复赛也是一个月的时间,这傻逼复赛究竟有什么意义?2、大家可以看看选手们在群里讨论什么:

点击阅读全文...