20 Jan

我是一个费曼迷

前几天在台湾购买(淘宝代购)的《费曼统计力学》和《费曼计算学》在今天到手了,至此,我的费曼著作收藏基本完成了。

费曼重力学、统计力学和计算学

费曼重力学、统计力学和计算学

我是一个费曼迷,为费曼的小飞侠人格所吸引,为费曼的物理才能所折服。因此,我甚至像普通人追星那样追崇费曼,收藏他的书籍,还有学习他所发明的物理。

点击阅读全文...

4 Dec

结果恒为整数的多项式

昨晚上初等数论的时候,有这么一道题

求证
$$\frac{1}{3}x^3+\frac{1}{5}x^5+\frac{7}{15}x$$
恒为整数,其中$x$是一个整数。

更一般地,可以得到
$$\sum_{p\in\mathbb{P}}\frac{1}{p}x^p + \left(1-\sum_{p\in\mathbb{P}}\frac{1}{p}\right)x$$
恒为整数,其中$\mathbb{P}$是有限个素数的集合,还有更多整数值函数问题。要证明这些函数的值恒为整数,可以通过同余分析,证明分子总能被分母整除。但是,更妙的、同时往往会更简单的方法是,将结果赋予必然为整数的意义——可以是计算上的,也可以是操作上的。

点击阅读全文...

31 Dec

我的写论文软件组合

思维导图

思维导图

这学期的数学建模课,对笔者来说,基本上就是一个锻炼论文写作和Python技能的过程。不过是写论文还是写博客,我都致力于写出符合自己审美观的作品,因此我才会选择$\LaTeX$,我才会选择Python。$\LaTeX$写出来的科学论文是公认的标准而好看的格式,而Python,的确可以作出漂亮的图,也可以简洁地完成所需要的数值计算。我越来越发现,在数学建模、写作方面,除了必不可少的符号推导部分(这部分只能用Mathematica),我已经离不开Python了。

为什么还要求漂亮?内容好不就行了吗?的确,内容才是主要的,但是如果能把展示效果美化一下,而且又不耗费更多的功夫,那么何乐而不为呢?

点击阅读全文...

17 Mar

你所没有思考过的平行线问题

欧几里得

欧几里得

本文的主题是平行线,了解数学的朋友可能会想我会写有关非欧几何的内容。但这次不是,本文的内容纯粹是我们从小就开始学习的欧氏几何,基于“欧几里得第五公设”(又称平行公设)。但即便是从小就学习的欧氏几何中的平行线,也许里边的很多问题我们都没有思考清楚。因为平行是几何中非常基本的情形,因此,在讨论这种基本命题的时候,相当容易会出现循环论证、甚至本末倒置的情况。

我们从初中开始就被灌输“同位角相等,两直线平行”、“内错角相等,两直线平行”之类的平行线判断法则,当然,还少不了的是“过直线外一点只能作一条直线与已知直线平行”。但是,这些内容之中,有多少是基本的公理,有多少是可以证明的,该如何证明,我想很多人都理解不清楚,我自己也没有一个很好的答案。那些在初中教授平行线的老师们,估计也没多少个能够把它说清楚的。后来我发现,我居然不会证明“同位角相等,两直线平行”,“欧几里得第五公设”好像并没有告诉我们这个判定法则呀。于是,我翻看了一下初中的数学教科书,发现原来当初“同位角相等,两直线平行”这一判定法则是不加证明地让我们接受的,无怪乎我怎么也想不到关于这一法则的简单的证明...

于是,我想写这篇文章,为大家理解平行线的整个逻辑提供一点参考。

点击阅读全文...

26 May

胡闹的胜利:将算子引入级数求和

在文章《有趣的求极限题:随心所欲的放缩》中,读者“最近倒了”提出了一个新颖的解法,然而这位读者写得并非特别清晰,更重要的是里边的某些技巧似乎是笔者以前没有见过的,于是自行分析了一番,给出了以下解释。

胡闹的结果

假如我们要求级数和
$$\sum_{k=0}^n \binom{n}{k}\frac{A_k}{n^k}$$
这里$A_0=1$。一般而言,我们用下标来标注不同的数,如上式的$A_k,\,k=0,1,2,\dots$,可是有的人偏不喜欢,他们更喜欢用上标来表示数列中的各项,他们把上面的级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}$$
可能读者就会反对了:这不是胡闹吗,这不是让它跟分母的n的k次幂混淆了吗?可是那人干脆更胡闹一些,把级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}=\left(1+\frac{A}{n}\right)^n$$
看清楚了吧?他干脆把$A$当作一个数来处理了!太胡闹了,$A$是个什么东西?估计这样的孩子要被老师赶出课堂的了。

可是换个角度想想,似乎未尝不可。

点击阅读全文...

10 Jun

【翻译】巨型望远镜:要继续,就得有牺牲!

2007年末公布的30米望远镜效果图

2007年末公布的30米望远镜效果图

文章来自:新科学家,这是一篇关于30米望远镜(Thirty Meter Telescope,TMT)的新闻,起因是望远镜的制造遭到当地人的不满,当然背后的原因是很深远的,难以说清楚。更多有关TMT的新闻,可以阅读:http://www.ctmt.org/

夏威夷的巨型望远镜:要继续,就得有牺牲!

四分之一必须离开!在停止了两个月之后,夏威夷的巨型30米望远镜(Thirty Meter Telescope,TMT)重新回归到建设进程——但要牺牲其他望远镜。

由于夏威夷当地居民的抗议声越来越大,早在四月望远镜的建设工作就被迫暂停。与该望远镜相比,目前世界上所有的望远镜都相形见绌——它让能够让天文学家们凝视可见的宇宙的边缘。它位于许多夏威夷人认为是“神圣之地”的死火山莫纳克亚山,因此被夏威夷人认为是一种侮辱——尤其是在山顶已经有十多个望远镜了。

点击阅读全文...

2 Jul

用Pandas实现高效的Apriori算法

最新更新:《用Numpy实现高效的Apriori算法》

最近在做数据挖掘相关的工作,阅读到了Apriori算法。平时由于没有涉及到相关领域,因此对Apriori算法并不了解,而如今工作上遇到了,就不得不认真学习一下了。Apriori算法是一个寻找关联规则的算法,也就是从一大批数据中找到可能的逻辑,比如“条件A+条件B”很有可能推出“条件C”(A+B-->C),这就是一个关联规则。具体来讲,比如客户买了A商品后,往往会买B商品(反之,买了B商品不一定会买A商品),或者更复杂的,买了A、B两种商品的客户,很有可能会再买C商品(反之也不一定)。有了这些信息,我们就可以把一些商品组合销售,以获得更高的收益。而寻求关联规则的算法,就是关联分析算法。

啤酒与尿布

啤酒与尿布

啤酒与尿布

关联算法的案例中,最为人老生常谈的应该是“啤酒与尿布”了。“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,超市管理人员发现“啤酒与尿布两件看上去毫无关系的商品会经常出现在同一个购物篮中”。经过分析,原来在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。因此,沃尔玛尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品。事实是效果相当不错!

点击阅读全文...

22 Dec

2014年全年天象

Astronomy Calendar of Celestial Events
2014年全年天象

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

2012年版本

2013年版本

点击阅读全文...