29 Aug

计算夏至的精确时刻2——提高精确度

之前曾经得到过一条计算夏至精确时间的公式,现在检验一下(之前推导是根据了2009年的数据)

公元Y年的夏至日期为该年的6月
$$21.9938+0.2422Y-\lfloor Y/4 \rfloor-\lfloor Y/400 \rfloor+\lfloor Y/100 \rfloor$$
其中$\lfloor x \rfloor$表示整数部分。

点击阅读全文...

30 Aug

科学空间:2010年9月重要天象

金星最亮相位-201009241900

金星最亮相位-201009241900

随着秋天的到来,飞马四边形已经逐渐取代夏夜银河,成为夜空的主角。虽然秋夜星空中亮星不多,稍显寂寥,但类似仙女座星系这样的深空天体无疑是天文爱好者钟爱的观测目标。此外,本月内木星的观测条件也很好,而偶发流星和流星雨也进入了多发时期,其中九月英仙座流星雨较为值得关注。

点击阅读全文...

10 Sep

级数求和——近似的无穷级数

级数是数学的一门很具有实用性的分支,而级数求和则是级数研究中的核心内容之一。很多问题都可以表示成一个级数的和或积,也就是$\sum_{i=1}^n f(i)$或者是$\prod_{i=1}^n f(i)$类型的运算。其中,$\ln(\prod_{i=1}^n f(i))=\sum_{i=1}^n \ln(f(i))=k$,因此$\prod_{i=1}^n f(i)=e^k$,也就是说,级数求积也可以变为级数求和来计算,换言之我们可以把精力放到级数求和上去。

为了解决一般的级数求和问题,我们考虑以下方程的解:
$$f(x+\epsilon)-f(x)=g(x)\tag{1}$$其中g(x)是已知的以x为变量的函数式,$\epsilon $是常数,初始条件是$f(k)=b$,要求f(x)的表达式。

点击阅读全文...

22 Sep

记IOAA之旅

经历了这十天的IOAA之旅,在不觉间,我仿佛完成了一次蜕变,一次人生的蜕变。仅以下面的这些简陋的文字,表达我这些天的经历与感受。

09.12---出发

广东--北京

广东--北京

点击阅读全文...

26 Sep

科学空间:2010年10月重要天象

“金九银十”如今已经成了各行业商家形容一年一度销售旺季的通用语,其实秋高气爽的九月和十月,更是天文观测的好时机。首先,经历了整个夏天的阴雨,秋季的晴天数会比较多,这点在我国北方地区舰得尤为明显。显然,这段时间夜晚的天气还不算太冷,即使观测整夜也不会太痛苦。十月夜空的看点还不少,虽然日落时候金星和火星的地平高度已经非常低了,观测条件较差,但木星刚过冲日,是比较理想的观测时期。此外猎户座流星雨也将在本月迎来极大,只是观测会受到月光的影响。

点击阅读全文...

23 Sep

圆满的句号——汽车站的邂逅

21日,是我从北京回家的日子。上午一切都很顺利,很早就赶到机场了,而且飞机也没有晚点。然而,事情却出现了一点意外——

原来由于台风影响,广东正在下暴雨,于是,飞机在广州上空盘旋了半个多小时,本来16:00就可以下的飞机,却到了近17:00才下。庆幸的是,这一次我没有把行李托运,于是下机后马上飞奔门口,乘坐机场快巴。还好,赶上了17:10的快巴。又是两个小时的路程,19:00左右,我到了肇庆汽车总站...

汽车站的售票人员说现在回新兴最早的班车是20:10的,距离现在还有一个小时,我犹豫了一下:这让我等太久了吧...抱着侥幸的心态,我打车到了肇庆的桥西汽车站,希望那儿会有早一点的班车。然而,结果是失望的:途径新兴的车都没有了。这时,在我前边的一个女孩出声了——

点击阅读全文...

10 Jul

弹簧双体运动

这也是我们期末考的题目,是理综的物理题之一。

一个零质量的理想弹簧两端分别系着一个质量为m的质点物体(A左B右),现给A一个向右的速度v0,使得整体开始运动。问弹簧压缩到最短时弹性势能是多少?以及B质点的最大速度是多少?

高中生是通过结合动量守恒和能量守恒来求解的。而我希望通过微分方程把握这个运动的整体信息,顺便验证弹簧能否将A的速度v0完全传递给B。

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...