Naive Bayes is all you need ?
By 苏剑林 | 2023-06-08 | 47561位读者 | 引用很抱歉,起了这么个具有标题党特征的题目。在写完《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》之后,笔者就觉得朴素贝叶斯(Naive Bayes)跟Attention机制有很多相同的特征,后来再推导了一下发现,Attention机制其实可以看成是一种广义的、参数化的朴素贝叶斯。既然如此,“Attention is All You Need”不也就意味着“Naive Bayes is all you need”了?这就是本文标题的缘由。
接下来笔者将介绍自己的思考过程,分析如何从朴素贝叶斯角度来理解Attention机制。
朴素贝叶斯
本文主要考虑语言模型,它要建模的是$p(x_t|x_1,\cdots,x_{t-1})$。根据贝叶斯公式,我们有
\begin{equation}p(x_t|x_1,\cdots,x_{t-1}) = \frac{p(x_1,\cdots,x_{t-1}|x_t)p(x_t)}{p(x_1,\cdots,x_{t-1})}\propto p(x_1,\cdots,x_{t-1}|x_t)p(x_t)\end{equation}
梯度流:探索通向最小值之路
By 苏剑林 | 2023-06-16 | 33030位读者 | 引用在这篇文章中,我们将探讨一个被称为“梯度流(Gradient Flow)”的概念。简单来说,梯度流是将我们在用梯度下降法中寻找最小值的过程中的各个点连接起来,形成一条随(虚拟的)时间变化的轨迹,这条轨迹便被称作“梯度流”。在文章的后半部分,我们将重点讨论如何将梯度流的概念扩展到概率空间,从而形成“Wasserstein梯度流”,为我们理解连续性方程、Fokker-Planck方程等内容提供一个新的视角。
梯度下降
假设我们想搜索光滑函数$f(\boldsymbol{x})$的最小值,常见的方案是梯度下降(Gradient Descent),即按照如下格式进行迭代:
\begin{equation}\boldsymbol{x}_{t+1} = \boldsymbol{x}_t -\alpha \nabla_{\boldsymbol{x}_t}f(\boldsymbol{x}_t)\label{eq:gd-d}\end{equation}
如果$f(\boldsymbol{x})$关于$\boldsymbol{x}$是凸的,那么梯度下降通常能够找到最小值点;相反,则通常只能收敛到一个“驻点”——即梯度为0的点,比较理想的情况下能收敛到一个极小值(局部最小值)点。这里没有对极小值和最小值做严格区分,因为在深度学习中,即便是收敛到一个极小值点也是很难得的了。
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
By 苏剑林 | 2023-02-23 | 81393位读者 | 引用历史总是惊人地相似。当初笔者在写《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀)时,以为自己已经搞清楚了构建ODE式扩散的一般步骤,结果读者 @gaohuazuo 就给出了一个新的直观有效的方案,这直接导致了后续《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》(当时后缀是“下”)。而当笔者以为事情已经终结时,却发现ICLR2023的论文《Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow》又给出了一个构建ODE式扩散模型的新方案,其简洁、直观的程度简直前所未有,令人拍案叫绝。所以笔者只好默默将前一篇的后缀改为“中”,然后写了这个“下”篇来分享这一新的结果。
直观结果
我们知道,扩散模型是一个$\boldsymbol{x}_T\to \boldsymbol{x}_0$的演化过程,而ODE式扩散模型则指定演化过程按照如下ODE进行:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
而所谓构建ODE式扩散模型,就是要设计一个函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$,使其对应的演化轨迹构成给定分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。说白了,我们希望从$p_T(\boldsymbol{x}_T)$中随机采样一个$\boldsymbol{x}_T$,然后按照上述ODE向后演化得到的$\boldsymbol{x}_0$是$\sim p_0(\boldsymbol{x}_0)$的。
生成扩散模型漫谈(十八):得分匹配 = 条件得分匹配
By 苏剑林 | 2023-02-28 | 30318位读者 | 引用在前面的介绍中,我们多次提及“得分匹配”和“条件得分匹配”,它们是扩散模型、能量模型等经常出现的概念,特别是很多文章直接说扩散模型的训练目标是“得分匹配”,但事实上当前主流的扩散模型如DDPM的训练目标是“条件得分匹配”才对。
那么“得分匹配”与“条件得分匹配”具体是什么关系呢?它们两者是否等价呢?本文详细讨论这个问题。
得分匹配
首先,得分匹配(Score Matching)是指训练目标:
\begin{equation}\mathbb{E}_{\boldsymbol{x}_t\sim p_t(\boldsymbol{x}_t)}\left[\left\Vert\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t) - \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)\right\Vert^2\right]\label{eq:sm}\end{equation}
其中$\boldsymbol{\theta}$是训练参数。很明显,得分匹配是想学习一个模型$\boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t)$来逼近$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$,这里的$\nabla_{\boldsymbol{x}_t}\log p_t(\boldsymbol{x}_t)$我们就称为“得分”。
Tiger:一个“抠”到极致的优化器
By 苏剑林 | 2023-03-07 | 45074位读者 | 引用这段时间笔者一直在实验《Google新搜出的优化器Lion:效率与效果兼得的“训练狮”》所介绍的Lion优化器。之所以对Lion饶有兴致,是因为它跟笔者之前的关于理想优化器的一些想法不谋而合,但当时笔者没有调出好的效果,而Lion则做好了。
相比标准的Lion,笔者更感兴趣的是它在$\beta_1=\beta_2$时的特殊例子,这里称之为“Tiger”。Tiger只用到了动量来构建更新量,根据《隐藏在动量中的梯度累积:少更新几步,效果反而更好?》的结论,此时我们不新增一组参数来“无感”地实现梯度累积!这也意味着在我们有梯度累积需求时,Tiger已经达到了显存占用的最优解,这也是“Tiger”这个名字的来源(Tight-fisted Optimizer,抠门的优化器,不舍得多花一点显存)。
此外,Tiger还加入了我们的一些超参数调节经验,以及提出了一个防止模型出现NaN(尤其是混合精度训练下)的简单策略。我们的初步实验显示,Tiger的这些改动,能够更加友好地完成模型(尤其是大模型)的训练。
NBCE:使用朴素贝叶斯扩展LLM的Context处理长度
By 苏剑林 | 2023-05-23 | 80991位读者 | 引用在LLM时代还玩朴素贝叶斯(Naive Bayes)?
这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCE(Naive Bayes-based Context Extension)方法。
摸石过河
假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。
Transformer升级之路:11、将β进制位置进行到底
By 苏剑林 | 2023-07-31 | 52291位读者 | 引用在文章《Transformer升级之路:10、RoPE是一种β进制编码》中,我们给出了RoPE的$\beta$进制诠释,并基于进制转化的思路推导了能够在不微调的情况下就可以扩展Context长度的NTK-aware Scaled RoPE。不得不说,通过类比$\beta$进制的方式来理解位置编码,确实是一个非常美妙且富有启发性的视角,以至于笔者每次深入思考和回味之时,似乎总能从中得到新的领悟和收获。
本文将重新回顾RoPE的$\beta$进制诠释,并尝试将已有的NTK-aware Scaled RoPE一般化,以期望找到一种更优的策略来不微调地扩展LLM的Context长度。
进制类比
我们知道,RoPE的参数化沿用了Sinusoidal位置编码的形式。而不知道是巧合还是故意为之,整数$n$的Sinusoidal位置编码,与它的$\beta$进制编码,有很多相通之处。
Google新作试图“复活”RNN:RNN能否再次辉煌?
By 苏剑林 | 2023-03-28 | 59337位读者 | 引用当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性Attention、FLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。
那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?
最近评论