训练1000层的Transformer究竟有什么困难?
By 苏剑林 | 2022-03-09 | 74511位读者 | 引用众所周知,现在的Transformer越做越大,但这个“大”通常是“宽”而不是“深”,像GPT-3虽然参数有上千亿,但也只是一个96层的Transformer模型,与我们能想象的深度相差甚远。是什么限制了Transformer往“深”发展呢?可能有的读者认为是算力,但“宽而浅”的模型所需的算力不会比“窄而深”的模型少多少,所以算力并非主要限制,归根结底还是Transformer固有的训练困难。一般的观点是,深模型的训练困难源于梯度消失或者梯度爆炸,然而实践显示,哪怕通过各种手段改良了梯度,深模型依然不容易训练。
近来的一些工作(如Admin)指出,深模型训练的根本困难在于“增量爆炸”,即模型越深对输出的扰动就越大。上周的论文《DeepNet: Scaling Transformers to 1,000 Layers》则沿着这个思路进行尺度分析,根据分析结果调整了模型的归一化和初始化方案,最终成功训练出了1000层的Transformer模型。整个分析过程颇有参考价值,我们不妨来学习一下。
增量爆炸
原论文的完整分析比较长,而且有些假设或者描述细酌之下是不够合理的。所以在本文的分享中,笔者会尽量修正这些问题,试图以一个更合理的方式来得到类似结果。
GAU-α:尝鲜体验快好省的下一代Attention
By 苏剑林 | 2022-04-22 | 46500位读者 | 引用在《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了GAU(Gated Attention Unit,门控线性单元),在这里笔者愿意称之为“目前最有潜力的下一代Attention设计”,因为它真正达到了“更快(速度)、更好(效果)、更省(显存)”的特点。
然而,有些读者在自己的测试中得到了相反的结果,比如收敛更慢、效果更差等,这与笔者的测试结果大相径庭。本文就来分享一下笔者自己的训练经验,并且放出一个尝鲜版“GAU-α”供大家测试。
GAU-α
首先介绍一下开源出来的“GAU-α”在CLUE任务上的成绩单:
$$\small{\begin{array}{c|ccccccccccc}
\hline
& \text{iflytek} & \text{tnews} & \text{afqmc} & \text{cmnli} & \text{ocnli} & \text{wsc} & \text{csl} & \text{cmrc2018} & \text{c3} & \text{chid} & \text{cluener}\\
\hline
\text{BERT} & 60.06 & 56.80 & 72.41 & 79.56 & 73.93 & 78.62 & 83.93 & 56.17 & 60.54 & 85.69 & 79.45 \\
\text{RoBERTa} & 60.64 & \textbf{58.06} & 74.05 & 81.24 & 76.00 & \textbf{87.50} & 84.50 & 56.54 & 67.66 & 86.71 & 79.47\\
\text{RoFormer} & 60.91 & 57.54 & 73.52 & 80.92 & \textbf{76.07} & 86.84 & 84.63 & 56.26 & 67.24 & 86.57 & 79.72\\
\text{RoFormerV2}^* & 60.87 & 56.54 & 72.75 & 80.34 & 75.36 & 80.92 & 84.67 & 57.91 & 64.62 & 85.09 & \textbf{81.08}\\
\hline
\text{GAU-}\alpha & \textbf{61.41} & 57.76 & \textbf{74.17} & \textbf{81.82} & 75.86 & 79.93 & \textbf{85.67} & \textbf{58.09} & \textbf{68.24} & \textbf{87.91} & 80.01\\
\hline
\end{array}}$$
为什么Pre Norm的效果不如Post Norm?
By 苏剑林 | 2022-03-29 | 92165位读者 | 引用Pre Norm与Post Norm之间的对比是一个“老生常谈”的话题了,本博客就多次讨论过这个问题,比如文章《浅谈Transformer的初始化、参数化与标准化》、《模型优化漫谈:BERT的初始标准差为什么是0.02?》等。目前比较明确的结论是:同一设置之下,Pre Norm结构往往更容易训练,但最终效果通常不如Post Norm。Pre Norm更容易训练好理解,因为它的恒等路径更突出,但为什么它效果反而没那么好呢?
笔者之前也一直没有好的答案,直到前些时间在知乎上看到 @唐翔昊 的一个回复后才“恍然大悟”,原来这个问题竟然有一个非常直观的理解!本文让我们一起来学习一下。
生成扩散模型漫谈(二):DDPM = 自回归式VAE
By 苏剑林 | 2022-07-06 | 123518位读者 | 引用在文章《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中,我们为生成扩散模型DDPM构建了“拆楼-建楼”的通俗类比,并且借助该类比完整地推导了生成扩散模型DDPM的理论形式。在该文章中,我们还指出DDPM本质上已经不是传统的扩散模型了,它更多的是一个变分自编码器VAE,实际上DDPM的原论文中也是将它按照VAE的思路进行推导的。
所以,本文就从VAE的角度来重新介绍一版DDPM,同时分享一下自己的Keras实现代码和实践经验。
Github地址:https://github.com/bojone/Keras-DDPM
多步突破
在传统的VAE中,编码过程和生成过程都是一步到位的:
\begin{equation}\text{编码:}\,\,x\to z\,,\quad \text{生成:}\,\,z\to x\end{equation}
生成扩散模型漫谈(七):最优扩散方差估计(上)
By 苏剑林 | 2022-08-12 | 73584位读者 | 引用对于生成扩散模型来说,一个很关键的问题是生成过程的方差应该怎么选择,因为不同的方差会明显影响生成效果。
在《生成扩散模型漫谈(二):DDPM = 自回归式VAE》我们提到,DDPM分别假设数据服从两种特殊分布推出了两个可用的结果;《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中的DDIM则调整了生成过程,将方差变为超参数,甚至允许零方差生成,但方差为0的DDIM的生成效果普遍差于方差非0的DDPM;而《生成扩散模型漫谈(五):一般框架之SDE篇》显示前、反向SDE的方差应该是一致的,但这原则上在$\Delta t\to 0$时才成立;《Improved Denoising Diffusion Probabilistic Models》则提出将它视为可训练参数来学习,但会增加训练难度。
所以,生成过程的方差究竟该怎么设置呢?今年的两篇论文《Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models》和《Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models》算是给这个问题提供了比较完美的答案。接下来我们一起欣赏一下它们的结果。
Transformer升级之路:7、长度外推性与局部注意力
By 苏剑林 | 2023-01-12 | 86796位读者 | 引用对于Transformer模型来说,其长度的外推性是我们一直在追求的良好性质,它是指我们在短序列上训练的模型,能否不用微调地用到长序列上并依然保持不错的效果。之所以追求长度外推性,一方面是理论的完备性,觉得这是一个理想模型应当具备的性质,另一方面也是训练的实用性,允许我们以较低成本(在较短序列上)训练出一个长序列可用的模型。
下面我们来分析一下加强Transformer长度外推性的关键思路,并由此给出一个“超强基线”方案,然后我们带着这个“超强基线”来分析一些相关的研究工作。
思维误区
第一篇明确研究Transformer长度外推性的工作应该是ALIBI,出自2021年中期,距今也不算太久。为什么这么晚(相比Transformer首次发表的2017年)才有人专门做这个课题呢?估计是因为我们长期以来,都想当然地认为Transformer的长度外推性是位置编码的问题,找到更好的位置编码就行了。
注意力和Softmax的两点有趣发现:鲁棒性和信息量
By 苏剑林 | 2023-04-25 | 29184位读者 | 引用最近几周笔者一直都在思考注意力机制的相关性质,在这个过程中对注意力及Softmax有了更深刻的理解。在这篇文章中,笔者简单分享其中的两点:
1、Softmax注意力天然能够抵御一定的噪声扰动;
2、从信息熵角度也可以对初始化问题形成直观理解。
鲁棒性
基于Softmax归一化的注意力机制,可以写为
\begin{equation}o = \frac{\sum\limits_{i=1}^n e^{s_i} v_i}{\sum\limits_{i=1}^n e^{s_i}}\end{equation}
有一天笔者突然想到一个问题:如果往$s_i$中加入独立同分布的噪声会怎样?
梯度视角下的LoRA:简介、分析、猜测及推广
By 苏剑林 | 2023-04-17 | 70439位读者 | 引用随着ChatGPT及其平替的火热,各种参数高效(Parameter-Efficient)的微调方法也“水涨船高”,其中最流行的方案之一就是本文的主角LoRA了,它出自论文《LoRA: Low-Rank Adaptation of Large Language Models》。LoRA方法上比较简单直接,而且也有不少现成实现,不管是理解还是使用都很容易上手,所以本身也没太多值得细写的地方了。
然而,直接实现LoRA需要修改网络结构,这略微麻烦了些,同时LoRA给笔者的感觉是很像之前的优化器AdaFactor,所以笔者的问题是:能否从优化器角度来分析和实现LoRA呢?本文就围绕此主题展开讨论。
方法简介
以往的一些结果(比如《Exploring Aniversal Intrinsic Task Subspace via Prompt Tuning》)显示,尽管预训练模型的参数量很大,但每个下游任务对应的本征维度(Intrinsic Dimension)并不大,换句话说,理论上我们可以微调非常小的参数量,就能在下游任务取得不错的效果。
LoRA借鉴了上述结果,提出对于预训练的参数矩阵$W_0\in\mathbb{R}^{n\times m}$,我们不去直接微调$W_0$,而是对增量做低秩分解假设:
\begin{equation}W = W_0 + A B,\qquad A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}\end{equation}
最近评论