《量子力学与路径积分》习题解答V0.5
By 苏剑林 | 2016-04-01 | 35466位读者 | 引用习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。
第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。
虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。
调侃:万有引力与爱因斯坦的理论
By 苏剑林 | 2016-05-18 | 48317位读者 | 引用我不是研究引力的,也没有很好地学习过引力。在理论物理方面,我学习经典力学和量子力学比学习广义相对论要多得多。因此,本来我是不应该谈引力的,以免误人子弟。不过,在一次坐车的途中,司机的刹车和加速让我联想到了一些跟引力有关的东西,自我感觉比较有趣,所以发给大家分享一下,也请大家指正。
等效原理
引力,准确来说应该是“万有引力”。所谓“万有”,有两个含义:1、所有物体都能够产生引力;2、所有物体都被引力影响。一个力居然是“万有”的,这让爱因斯坦感觉到非常奇怪,这也是四种基本力之中,引力跟其他力区别最明显的地方。相比之下,电磁相互作用力就只能存在于有“电”的地方,弱相互作用只存在于费米子,等等。
除了引力之外,我们平时还遇到过什么“万有”的力吗?貌似没有。但是我们想象一下,当你坐在一辆长途大巴匀速前进时,突然司机来了一个急刹车,在刹车的那一瞬间,所有人都往前倾了,不仅如此,可能你的行李箱、你的随身物品都往前移的,事实上,车上所有东西都受到了一个往前的力!对于那辆车上的人和物来说,刹车的那一瞬间,就存在着一个“万有”的力!
斯特灵(stirling)公式与渐近级数
By 苏剑林 | 2016-04-15 | 59023位读者 | 引用斯特灵近似,或者称斯特灵公式,最开始是作为阶乘的近似提出
$$n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
符号$\sim$意味着
$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n!}=1$$
将斯特灵公式进一步提高精度,就得到所谓的斯特灵级数
$$n!=\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(1+\frac{1}{12n}+\frac{1}{288n^2}\dots\right)$$
很遗憾,这个是渐近级数。
相关资料有:
https://zh.wikipedia.org/zh-cn/斯特灵公式
https://en.wikipedia.org/wiki/Stirling%27s_approximation
本文将会谈到斯特灵公式及其渐近级数的一个改进的推导,并解释渐近级数为什么渐近。
Coming Back...
By 苏剑林 | 2016-05-15 | 37967位读者 | 引用上一篇博文的发布时间是4月15日,到今天刚好一个月没更新了,但是科学空间的访问量还在。感谢大家对本空间的支持,BoJone对久未更新表示非常抱歉。在恢复更新之前,请允许笔者记记流水账。
在“消失”的一个月中,笔者主要的事情是毕业论文和数据挖掘竞赛。首先毕业论文方面,论文于4月22日交稿,4月29日答辩,答辩完后就意味着毕业论文的事情结束了。我的毕业论文主要写了路径积分在描述随机游走、偏微分方程、随机微分方程的应用。既然是本科论文,就不能说得太晦涩,因此论文整体来看还是比较易读的,可以作为路径积分的入门教程。后面我会略加修改,分开几部分发布在科学空间中的,到时请大家批评指正。
说到路径积分,不得不说到做《量子力学与路径积分》的习题解答这件事情了。很遗憾,这一个多月来,基本没有时间做习题。不过后面我会继续做下去的,已发布的版本,也请有兴趣的读者指出问题。记得年初的时候,朋友问我今年的愿望是什么,我随意地回答了“希望做完一本书的习题”,这本书,当然就是《量子力学与路径积分》了,我相信今年应该能够完成的。
【备忘】用树莓派3做无线路由器
By 苏剑林 | 2016-04-12 | 64596位读者 | 引用3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。
参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh
路径积分系列:1.我的毕业论文
By 苏剑林 | 2016-05-30 | 28169位读者 | 引用之前承诺过会把毕业论文共享出来,让大家批评指正,却一直偷懒没动。事实上,毕业论文的主要内容就是路径积分的一些入门级别的内容,标题为《随机游走、随机微分方程与偏微分方程的路径积分方法》。我的摘要是这样写的:
本文从随机游走模型出发,得到了关于随机游走模型的一般结果;然后基于随机游走模型引入了路径积分,并且通过路径积分方法,实现了随机游走、随机微分方程与抛物型微分方程的相互转化,并给出了一些计算案例.
路径积分方法是量子理论的一种形式,但实际上它可以抽象为一个有用的数学工具,本文的主要方法正是抽象后的路径积分;其次,量子力学中有一个相当典型的抛物型偏微分方程——薛定谔方程,物理学家已经对它进行了大量的研究,有众多的成果;而随机微分方程是一个微分方程的拓展,在物理、工程、金融等很多方面都有重要应用,这个领域中也有很多研究方法;最后,随机游走是一个简单而重要的模型,它是很多扩散模型的基础,而且具有容易使用计算机模拟的特性. 因此,实现三者的转化是很有意义的.
本文有一些新的内容,比如现有文献比较少研究的不对称随机游走方面、以及现有文献比较含糊的对路径积分的介绍等,可以供同好参考,希望借此方式,能够让一些读者以更简洁明了的方式理解路径积分. 但是本文主要是陈述性的,旨在在国内推广路径积分方法. 在国外,路径积分方法得到了相当的重视,它源于量子力学,但应用已经不仅仅限于量子力学,如著作[1],因此,推广路径积分方法、增加路径积分的中文资料,是很有意义和很有必要的事情.
本文所有推导和例子均以一维为例,相应的多维问题可以类似地计算。
路径积分系列:2.随机游走模型
By 苏剑林 | 2016-05-30 | 54516位读者 | 引用随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.
笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.
本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.
模型简介
本节通过一个本质上属于二项分布的走格子问题来引入随机游走.
考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.
路径积分系列:3.路径积分
By 苏剑林 | 2016-06-02 | 73702位读者 | 引用路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.
从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.
本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.
从点的概率到路径的概率
在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.
最近评论