高考倒计时15天...
By 苏剑林 | 2012-05-23 | 39319位读者 | 引用费曼积分法——积分符号内取微分(1)
By 苏剑林 | 2012-06-10 | 78761位读者 | 引用费曼积分法——积分符号内取微分(2)
By 苏剑林 | 2012-06-12 | 93595位读者 | 引用上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。
一般原理
我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$
在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$
刚从天堂(镇)赶回来,这次大概一个星期的骑自行车游新兴之旅基本结束了。
这次行程我们总共穿越了太平、新城、洞口、车岗、六祖、东成、稔村、水台、勒竹、河头、天堂,共十一个镇,没有到过的地方还有共成、船岗、大江、里洞等,这些地方骑单车可能比较困难,有时间坐车去逛逛。
这次旅行可谓大有收获!各地的“到此一游”让我们增长了不少见识,加深了对我们家乡的了解;一路上大家嘻嘻哈哈,乐趣无穷,为我们的友谊增添了美好的点缀;到同学家玩玩闹闹,也加强了我们之间的联系,同样乐趣无穷;还有增加了探路找路的技术......
感谢所有陪我们一起玩、一起疯的同学,感谢所有给我们帮助的同学,人生因为你们的存在而更加精彩!
你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。
其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......
最近评论