7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

19 Jun

向量结合复数:常曲率曲线(1)

在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?

答案貌似是很显然的,我们需要证明一下。

由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)

点击阅读全文...

19 Jul

一道整数边三角形题目

这是一道来自“数联天地”的题目:

三边长均为整数的三角形,周长为1000,其中一个内角是另外一个内角的两倍。求三边长度

咋看上去这是一道几何题目,但实际上这是一道初等数论题,而且主要是不定方程问题。类似的题目在数学竞赛中其实有可能出到,在这里和大家探讨一番。话说回来,其实笔者小时候很喜欢数论方面的内容的,在小学和初中,经常围绕着“素数”、“完全数”、“亲和数”、“大数分解”等等名词钻研看书。现在学习了微积分等内容之后,兴趣逐渐转向了实用性较强的数学,因而数论内容的水平不高,大家见笑了。

点击阅读全文...

26 Jun

费曼积分法——积分符号内取微分(4)

趁着早上有空,就赶紧把这篇文章写好吧。下午高考成绩要公布了,公布后也许又会有一段时间忙碌了。这应该是“费曼积分法”系列最后一篇文章了。它主要讲的还是费曼积分法的一个实例。不同的是,这是BoJone首次独立地用费曼积分法解决了一个问题。之前提到的一些例子,都是书本提供并结合了提示,BoJone才把它们算出来的。所以这个问题有着点点纪念意义。

数学研发论坛上wayne曾求证这样的命题:

$\int_0^{\infty}\frac{f(x,2m-1)-\sin x}{x^{2m+1}}dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开
如m=1时,
$$\int_0^{\infty}\frac{x-\sin x}{x^3}dx$$
m=2时
$$\int_0^{\infty}\frac{x-\frac{x^3}{6}-\sin x}{x^5}dx$$
借助软件我发现结果是:
$\frac{\pi(-1)^{m-1}}{2(2m)!}$

点击阅读全文...

8 Aug

[共享]不等式文集

最近在浏览“数学研发论坛”的时候,发现了一系列不等式手册,感觉是挺宝贵的资源,就把它转载到这里来了。

当然,里边的内容难度不一,很多东西我自己也未必用得上,甚至不能弄懂,不过还是放在这里保存,并与大家分享。

原文链接:http://bbs.emath.ac.cn/thread-1549-1-1.html

文件包内容:

152个未解决的问题.pdf
HLODER 与 MINKOWSKI不等式.pdf
不等式常用证法50种.pdf
不等式基本性质.pdf
单调函数不等式.pdf
调和函数不等式.pdf
多边形与多面体不等式.pdf
反三角函数不等式.pdf
级数不等式.pdf
数论不等式.pdf

点击阅读全文...

30 Aug

折腾windows 8和ubuntu 12

这是一篇用Windows 8完成的文章。

快开学了,华师2号就要报道了,所以就提前入手一台手提电脑,联想Z575AM-ASI,四千元的AMD,4核,64位机器。

我的台式机已经是六年前的产品了,联想的家悦系列,只有512MB内存。所以相比之下,这新机器配置还过得去吧,对于CPU,我个人还是倾向于AMD的,因为我的那台家悦台式也是AMD的CPU,所以对它很有好感。新兴的联想专卖店没有AMD手提,所以还得提前向他们预订。

Windows8

手提本身没有预装操作系统,专卖店很随手地为我装了一个win7,而且还只是ghost版本的,时不时会卡死,感觉很不好,刚好前些日子在网上开始发布Windows8了,所以就马上把Win7格掉,装上Windows8了。安装过程很顺利,由于还没有正式发布,所以还没有激活,这段时间纯粹体验中。等正式版发布了,再计划买一个正版光盘吧

点击阅读全文...

18 Dec

黑洞融合的简单模拟

在天文爱好者眼中,黑洞是一个球体,其半径为$\frac{2GM}{c^2}$;这是广义相对论的施瓦兹黑洞的结果,也从经典力学推导推导出来,虽然用经典力学是错误的,但是对于多数的天文爱好者(包括笔者)来说,这是目前唯一的一种可行的理解方法(广义相对论那些复杂推导会让我们很崩溃的)。当然,事实上,黑洞不是一个球体,它只是一个密度很大的点。至于密度有多大,目前公认的说法是无穷大,但是严格的物理是不接受这个说法的,或者说,物理是不会接受任何无穷大的说法,所以现在积极发展量子引力理论来统一相对论和量子力学,不过这是另话了。$\frac{2GM}{c^2}$只不过是黑洞的视界,视界之内,我们就什么也不知道了。本文主要就从经典力学的角度探讨一下两个黑洞的合并过程中其视界的变化。读者将会发现,这些视界的形状相当有趣。

经典力学中的黑洞是这样定义的:天体表面的逃逸速度超过了光速,于是连光都无法逃脱,所以这个“洞”就很黑。也就是说,光子的总能量(引力势能与动能之和,经典力学意义下的)要为负,负数表示受到束缚。用数学公式来讲,就是:

$$\frac{1}{2}mc^2 - \frac{GM_1 m}{r_1}-\frac{GM_2 m}{r_2}-...-\frac{GM_n m}{r_n} \leq 0$$

点击阅读全文...

7 Mar

高斯型积分的微扰展开(二)

为什么第二篇姗姗来迟?

其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673

这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。

后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。

点击阅读全文...