9 Dec

《自然极值》系列——5.最速降线的故事

如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。

(以下内容来源于网络,科学空间整理)

意大利科学家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大科学家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。

Brachistochrone

Brachistochrone

点击阅读全文...

4 Dec

科学空间:2010年12月重要天象

月全食-2010-12-21

月全食-2010-12-21

从2007年初到今天,笔者编写的天象预报已经陪伴了大家四年。如今又是一年即将过去,就让笔者以回顾今年的精彩天象的方式作为本期的幵篇。虽然缺少了在我国境内可观测的日全食,但今年天象的精彩程度毫不逊于前两年。1月15日的日环食再次掀起了一股天文热,我国环食带内大部分地区的观测也非常成功。希望12月的月全食发生时东北地区的天气可以一如既往地天随人愿。暑期的英仙座流星雨依旧表现抢眼,相信大家必然对年末的双子座流星雨充满了期待。此外,6月26日的月偏食和8月中旬的四星伴月或许也给您留下了深刻的印象。彗星方面,非周期彗星C2009 R1相当惊艳,不但亮度一度达4等左右,在许多爱好者拍摄的照片中两条彗尾也清晰可见。10月103P彗星经过近日点,也达到了肉眼可见的亮度,但彗尾很不明显。总之,2010年不乏颇具看点的精彩天象,作为天文爱好者的你一定是收获颇丰。接下来,我们就来看看2010年最后一个月即将发生的精彩天象吧。

点击阅读全文...

28 Nov

《自然极值》系列——4.费马点问题

通过上面众多的文字描述,也许你还不大了解这两个原理有何美妙之处,也或者你已经迫不及待地想去应用它们却不知思路。为了不至于让大家产生“审美疲劳”,接下来我们将试图利用这两个原理对费马点问题进行探讨,看看原理究竟是怎么发挥作用的。运用的关键在于:如何通过适当的变换将其与光学或势能联系起来。

费马点问题

费马点问题

传统费马点问题是指在ΔABC中寻找点P,使得$AP+BP+CP$最小的问题;而广义的费马点则改成使$k_1 AP+k_2 BP+k_3 CP$最小。这是很具有现实意义的,是“在三个村庄之间建立一个中转站,如何才能使运送成为最低”之类的最优问题。我们将从光学和势能两个角度对这个问题进行探讨(也许有的读者已经阅读过了利用重力的原理来求解费马点,但是我想光学的方法依然会是你眼前一亮的。

点击阅读全文...

28 Nov

《自然极值》系列——3.平衡态公理

黄果树大瀑布

黄果树大瀑布

光学定律无疑是一个美妙的原理,而自然界中还存在另外一个我们随处可见的“公理”。平时的生活中,我们总能看见“水往低处流”的现象,这是因为水处于地球重力场的结果(也正因为如此,某些轻生者的自杀活动才得以顺利进行;当然,我们并不需要为了验证这一点而亲自试验。)。由此我们可以联想到一个名词:重力势能。“水往低处流”意味着什么呢?高度变低了。高度更低意味着什么呢?重力势能降低了!换句话说,自然界中物体有趋于势能最低的倾向。我们可以从这个角度来解释:体系总有趋于稳定的倾向,而拥有的能量(势能)越高,则越不稳定。

点击阅读全文...

27 Nov

《自然极值》系列——2.费马原理

物理学的美不仅仅表现在简洁的公式上。我们还惊奇地发现,很多物理现象都是按照使某个变量达到极值的方式发生。一个典型的例子就是费马原理,它指出了光的传播路径的一个重要规律:光总是沿着所花时间最短的路径传播。这里我们将简单介绍一下费马原理。

费马原理俗称“最快到达原理”、“最小时间原理”。1657年,费马提出:

从P点到达Q点,在所有可行的路径中,光选择了所需时间最短的一条。
从P点到达Q点,在所有可行的路径中,光选择了所需时间为极值的一条。

这是一个极其奇妙的原理,也是自然界中最神奇的极值之一。作为非生物的光,居然自主地选择了最优路径,成为世界上“效率最高”的东西,这让人不得不佩服宇宙的伟大。这究竟是造物者的精心设计,还是无心之作?

点击阅读全文...

27 Nov

《自然极值》系列——1.前言

附:期中考过后,课程紧了,自由时间少了,因此科学空间的更新也放缓了。不过BoJone也会尽量地更新一些内容,和大家一同分享学习的乐趣。

闭区间[a,b]上的连续函数?(x),其最大值为红色点,最小值为蓝色点

闭区间[a,b]上的连续函数?(x),其最大值为红色点,最小值为蓝色点

上一周和这一周的时间里,BoJone将自己学习物理和极值的一些内容进行了总结和整合,写成了《自然极值》一文。因此从今天起,到十二月的大多数时间里,科学空间将和大家讲述并讨论关于“极值”的问题,希望读者会喜欢这部分内容。当然,我不是专业的研究人员,更不是经验丰富的物理和数学教师,甚至可以说是一个“乳臭未干的小子”,因此,错误在所难免,只希望同好不吝指出,更希冀能够起到我抛出的这一块“砖”能够引出美妙的“玉”。

点击阅读全文...

13 Nov

意犹未尽——继续光学曲线

《为什么是抛物线?——聚光面研究》这篇文章里头,我们从光学性质出发,推导出了符合该光学性质的曲线为抛物线,同时我们也不禁感到了向量分析的美妙。也许有的读者会意犹未尽:圆锥曲线有三种,文章只介绍了一种。那好,在这篇文章里,我们就从另外两个光学性质出发,推导出符合这两个光学性质的曲线(椭圆、双曲线)。

(注:在下面的描述中,橙色加粗向量表示光线,曲线表示反射面。)

一、从一个点发出的光线经过曲线(面)反射后汇集到另外一个点上。

椭圆的光学性质

椭圆的光学性质

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...